POLITECNICO
DI TORINO

Inter Process Commmunication

Operating Systems - Sarah Azimi

OUTLINE

= JPC mechanisms:
= Shared Memory
= Message Passing

= Pipes (hamed and unnamed)
= Signals

Unix Pipes

Pipe sets up communication channel between two processes (related or unrelated):
= Pipes are uni-directional.

= They can only transfer data in one direction.

Both the writer and reader process of a pipeline execute concurrently.

A pipe automatically buffer the output of the writer and suspends the writer if the pipe gets too full.
Similarly, if a pipe is empty, the reader is suspended until some more output becomes available.

Process 1 Process 2

Pipe

Two processes connected by a pipe

Unix Pipes

= There are two kinds of pipes.

= Unnamed piped for communication between a parent and its child, with one process writing and
the other process reading.

= Named pipes for communication between unrelated processes. Any process can communicate
with another one using named pipes.

Process 1 Process 2

Two processes connected by a pipe

Named Pipes or FIFOs

= Named pipes, often referred to as FIFOs (first in, first out), are less restricted than
unnamed pipes and offer the following advantages:

= They have a name that exists in the file system.

= They may be used by unrelated processes.

= They exist until explicitly deleted.

= They have a larger buffer capacity, typically about 40K.

= mkfifo () to create a named pipe
" Unlink () to remove the named pipe from the file system

Named Pipes or FIFOs

= mkfifo () allows you to create a FIFO special file (a named pipe).
= Syntax:

int mkfifo (const char *path, mode_t mode);

= Path corresponds to the name of the pipe.
= Mode corresponds to the permission mode flags.

= A named pipe is first opened using open () .
= Write() adds data at the start of the FIFO queue.
= Read () removes data from the end of the FIFO queue.

Named Pipes or FIFOs

= mkfifo () allows you to create a FIFO special file (a named pipe).
= Syntax:

int mkfifo (const char *path, mode_t mode);

= When a process has finished using a named pipe, it should close it using close () .

= Writer processes should open a named pipe for writing only
= Reader processes should open a pipe for reading only.

= when a named pipe is no longer needed, it should be removed from the file system using
unlink () .

= Syntax:

int unlink (const char *path);

Named Pipes or FIFOs

WRITER READER
include <stdioh> # include <stdio.h>
include <sys/types.h> # include <sys/types.h>
include <sys/stat.h> # include <sys/stat.h>
include <fentl.h> # include <fentl.h>
Int main (K Int main (}

const char *pipeNAME = “pipeName”; const char *pipeNAME = “pipeName”;

int mynumber;

' . int number;
!<mf|fo (plpeNAl\./\E, 0669); int fd = open (pipeName, O_CREATE | O_RDONLY);
int fd = open (pipeName, O_CREATE | O_WRONLY); read (fd, &number, sizeof(int));
write (fd, mynumber, sizeof(int)); close (fd);
close (fd); unlink (pipeNAME);

unlink (pipeNAME); }

Signal

= A signal is a software notification to a process of an event:
= Signal is generated by a particular event.
= Signal is delivered to a process.
= Signal is handled.

Signal

A signal is a software notification to a process of an event:

Signal is generated by a particular event.
Signal is delivered to a process.
Signal is handled.

There are three ways in which a process can respond to a signal:
= Ignoring the signal
= signal (SIG#, SIG_IGN)
= Executing the default action associated with the signal
= signal (SIG#, SIG_DFL)
= Catching the signal by invoking a corresponding signal-handler function
= signal(SIG#, myHandler)
OS provides a facility for writing your own event handlers in the style of interrupt handlers.

10

Send a Signal

= To Raise a signal

= Syntax:
kill (pid, signal);

= Pid is an input parameter, id of the process that receives the signal.
= Signal is a signal number.
= returns O to indicate success, error code otherwise.

= Example
* pid t iPid = getpid(); /* Process gets its id.*/
= kill(iPid, SIGINT); /* Process sends itself a SIGINT signal (commits suicide) */

11

Signal Handler

= A signal handler is used to process signals

= Corresponding to each signal there is a signal handler.

= Called when a process receives a signal.

= When the signal handler returns the process continues,
as if it was never interrupted.

User Defined Signal Handlers

include <stdio.h>
include <signal.h>
Void handle-sigint ()

{
}

printf (“Caught signals\n”);

Int main (){
signal (SIGINT, handle-sigint);
while (1) ;
return O;

}

include <stdio.h>
include <signal.h>
include <unistd.h>

Void handle-sigint (){
printf (“Caught signals\n”);
exit (0);
Y
Int main (){
pid_t pid;
pid = fork ();
If (pid ==0)
signal (SIGINT, handle-sigint);
while (1);
}
else {
printf (“I am killing my child\n”);
kill (pid, SIGINT)
}
}

12

