
Inter Process Communication

Operating Systems – Sarah Azimi

OUTLINE

2

▪ IPC mechanisms:

▪ Shared Memory

▪ Message Passing

▪ Pipes (named and unnamed)

▪ Signals

Message Passing

3

▪ Message Passing provides a mechanism for processes to communicate and synchronize
their actions without sharing the same address space.

▪ IPC facility provides two operations:

▪ Send (message)

▪ Receive (message)

▪ If processes P and Q wish to communicate, they need to:

▪ Establish a communication link between them.

▪ Exchange messages via send/receive functions.

Process A Process B

Message Queue

Message Queue

4

▪ To perform communication using message queues, following are the steps:

▪ Step 1 – Create a message queue or connect to an already existing message queue

▪ msgget()

▪ Step 2- Write into message queue

▪ msgsnd()

▪ Step 3 − Read from the message queue

▪ msgrcv()

▪ Step 4 − Perform control operations on the message queue

▪ msgctl())

Create a message queue

5

▪ To create or allocate a message queue

▪ Syntax:

int msgget (key_t key, int flag);

▪ Key is an integer that specifies the queue key, that may be one of:

▪ IPC_PRIVATE: to create a private message queue

▪ Positive integer: To create a publicly accessible message queue.

▪ flag is used to indicate creation conditions and access permissions. It is bitwise or of flag

values. The flag values include these:

▪ IPC_CREAT: A new queue should be created

▪ IPC_EXCL: It causes msgget to fail if a queue key that is specified already exists.

▪ Mode flags: This value is made of 9 bits indicating permissions granted to owner, group and world to
control access to segment. Execution bits are ignored.

▪ This function returns a message queue identifier (msgid) on success and -1 in case of failure.

Send a message queue

6

▪ To send or append a message into the message queue

▪ Syntax:

int msgsnd (int msgid, const void *msgp, size_t msgsz, int msgflg);

▪ msgid is the message queue identifier. It is the return value of msgget in case of success.

▪ msgp is the pointer to the message. It is defined in the structure of the following form:

Struct msgbuf {

long mtype;

char mtext [1];

} ;

▪ msgflag indicates certain flags such as:

▪ IPC_NOWAIT which returns immediately when no message is found in queue.

▪ MSG_NOERROR truncates message text if it is more than msgsz byte.

▪ It return 0 in success and -1 in case of failure.

Receive a message on a queue

7

▪ Receiving a message from message queue by calling msgrcv().

▪ Syntax:
int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtype, int msgflg);

▪ msgid corresponds to the message queue identifier (the value returned by msgget())

▪ msgp points to a message received from the sender.

▪ msgsz specifies the actual size of the message text.

Receive a message on a queue

8

▪ Receiving a message from message queue by calling msgrcv().

▪ Syntax:
int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtype, int msgflg);

▪ msgtype can be used by the receiver for message selection.

▪ If msgtype is 0 ---> Reads the first message available in a FIFO queue.

▪ If msgtype is +ve ---> Reads first message on queue whose type equals msgtype.

▪ If msgtype is –ve ---> Reads first message on queue whose type is the lowest value
less than or equal to the absolute value of msgtype.

Receive a message on a queue

9

▪ Receiving a message from message queue by calling msgrcv().

▪ Syntax:
int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtype, int msgflg);

.

▪ The msgflag is a bit mask constructed by ORing together zero or more of the possible flags (see

the man pages):

▪ IPC_NOWAIT: it returns immediately if no message of the requested type is in the queue. The system call

fails with errno set to ENOMSG.

Receive a message on a queue

10

▪ Receiving a message from message queue by calling msgrcv().

▪ Syntax:
int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtype, int msgflg);

▪ Return value:

▪ If successful, msgrcv returns the number of bytes in the text of the message.

▪ If unsuccessful, it returns -1.

Remove a message on a queue

11

▪ To perform control operations on a message queue.

▪ Syntax:
int msgctl (int msqid, int *cmd, struct msqid_ds *buf);

▪ msgid corresponds to the message queue identifier (the value returned by msgget())

▪ cmd is the command to perform the required control operation on the message queue.

▪ IPC_RMID to removed the message queue immediately. The removal is immediate and any other process

still using the message queue will get an error on its next attempted operation on the queue.

▪ buf is the pointer to the message queue structure named struct msgid_ds.

Pipes

12

▪ Pipe sets up communication channel between two processes (related or unrelated):

▪ Pipes are uni-directional.

▪ They can only transfer data in one direction.

▪ A pipe automatically buffer the output of the writer and suspends the writer if the pipe gets too full.

▪ Similarly, if a pipe is empty, the reader is suspended until some more output becomes available.

▪ There are two kinds of pipes.

▪ Unnamed piped for communication between a parent and its child, with one process writing and the
other process reading.

▪ Named pipes for communication between unrelated processes. Any process can communicate with
another one using named pipes.

Process 1 Process 2

Pipe
A B

Two processes connected by a pipe

Unnamed pipe

13

▪ An unnamed pipe is a unidirectional communications link that automatically buffers its data.

▪ Syntax:
int pipe (int fd[2]);

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

main()
{

int fd[2];
pipe(fd);

…
}

“pipe()” creates an un named pipe and returns two file descriptions: fd [0], fd [1]

• If the kernel cannot allocate enough space for a new pipe, “pipe()” returns a

value of -1, otherwise, it returns a value of 0.

“fd[2]”:
• The descriptor associated with the “read” end of the pipe is stored in fd [0]

• The descriptor associated with the “write” end of the pipe is sored at fd [1]

fd [0]

fd [1]

write end

pipe

read end

Unnamed pipe sequence of events

14

▪ The parent process creates an unnamed pipe using “pipe()”

▪ The parent process forks

▪ The processes communicate by using “write()” and “read()” calls

▪ Each process closes its active pipe descriptor when it is finished.

int read (int fd, char *buf, int size)
For reading “size” bytes from the files specified by “fd” into the memory location pointed by “buf”

int write (int fd, char *buf, int size)
For writing the bytes stored in “buf” to the file specified by “fd”

Unnamed pipe Scheme

15

▪ The typical sequence of events for a communication is as follows:

15

include <sys/wait.h> /*wait*/

include <stdio.h>

include <stdlib.h> /*exit functions*/

include <unistd.h> /*read, write, pipe*/

Int main (){

int pipeFDs [2]; /*two file descriptors*/

pipe(pipeFDs);

pid = fork ();

If (pid == 0){ // in the child

write (pipeFD [1], yourMessage, strlen (yourMessage));

close (pipeFD [1]);}

else { // in the father

byteRead = read (pipeFD [0], msg, 100);

close (pipeFD [0]);}

}

“pipe()” creates an un named pipe and returns

two file descriptions: pipeFD [0], pipeFD[1].

“pipeFD[2]”:
• The descriptor associated with the “read” end of the pipe is

stored in pipeFD [0].

• The descriptor associated with the “write” end of the pipe is

sored at pipeFD [1].

int write (int fd, char * buf, int size)

int read (int fd, char * buf, int size)

