
Inter Process Communication

Operating Systems – Sarah Azimi

OUTLINE

2

▪ IPC mechanisms:

▪ Shared Memory

▪ Message Passing

▪ Pipes (named and unnamed)

▪ Signals

Unix Pipes

3

▪ Pipe sets up communication channel between two processes (related or unrelated):

▪ Pipes are uni-directional.

▪ They can only transfer data in one direction.

▪ Both the writer and reader process of a pipeline execute concurrently.

▪ A pipe automatically buffer the output of the writer and suspends the writer if the pipe gets too full.

▪ Similarly, if a pipe is empty, the reader is suspended until some more output becomes available.

Process 1 Process 2

Pipe
A B

Two processes connected by a pipe

Unix Pipes

4

▪ There are two kinds of pipes.

▪ Unnamed piped for communication between a parent and its child, with one process writing and
the other process reading.

▪ Named pipes for communication between unrelated processes. Any process can communicate
with another one using named pipes.

Process 1 Process 2

Pipe
A B

Two processes connected by a pipe

Named Pipes or FIFOs

5

▪ Named pipes, often referred to as FIFOs (first in, first out), are less restricted than
unnamed pipes and offer the following advantages:

▪ They have a name that exists in the file system.

▪ They may be used by unrelated processes.

▪ They exist until explicitly deleted.

▪ They have a larger buffer capacity, typically about 40K.

▪ mkfifo() to create a named pipe

▪ Unlink() to remove the named pipe from the file system

Named Pipes or FIFOs

6

▪ mkfifo() allows you to create a FIFO special file (a named pipe).

▪ Syntax:

int mkfifo (const char *path, mode_t mode);

▪ Path corresponds to the name of the pipe.

▪ Mode corresponds to the permission mode flags.

▪ A named pipe is first opened using open().

▪ Write() adds data at the start of the FIFO queue.

▪ Read() removes data from the end of the FIFO queue.

Named Pipes or FIFOs

7

▪ mkfifo() allows you to create a FIFO special file (a named pipe).

▪ Syntax:

int mkfifo (const char *path, mode_t mode);

▪ When a process has finished using a named pipe, it should close it using close().

▪ Writer processes should open a named pipe for writing only

▪ Reader processes should open a pipe for reading only.

▪ when a named pipe is no longer needed, it should be removed from the file system using
unlink().

▪ Syntax:

int unlink (const char *path);

Named Pipes or FIFOs

8

include <stdio.h>

include <sys/types.h>

include <sys/stat.h>

include <fcntl.h>

Int main (){

const char *pipeNAME = “pipeName”;

int number;

int fd = open (pipeName, O_CREATE | O_RDONLY);

read (fd, &number, sizeof(int));

close (fd);

unlink (pipeNAME);

}

include <stdio.h>

include <sys/types.h>

include <sys/stat.h>

include <fcntl.h>

Int main (){

const char *pipeNAME = “pipeName”;

int mynumber;

kmfifo (pipeNAME, 0666);

int fd = open (pipeName, O_CREATE | O_WRONLY);

write (fd, mynumber, sizeof(int));

close (fd);

unlink (pipeNAME);

}

READERWRITER

Signal

9

▪ A signal is a software notification to a process of an event:

▪ Signal is generated by a particular event.

▪ Signal is delivered to a process.

▪ Signal is handled.

Signal

10

▪ A signal is a software notification to a process of an event:

▪ Signal is generated by a particular event.

▪ Signal is delivered to a process.

▪ Signal is handled.

▪ There are three ways in which a process can respond to a signal:

▪ Ignoring the signal

▪ signal (SIG#, SIG_IGN)

▪ Executing the default action associated with the signal

▪ signal (SIG#, SIG_DFL)

▪ Catching the signal by invoking a corresponding signal-handler function

▪ signal(SIG#, myHandler)

▪ OS provides a facility for writing your own event handlers in the style of interrupt handlers.

Send a Signal

11

▪ To Raise a signal

▪ Syntax:
kill (pid, signal);

▪ Pid is an input parameter, id of the process that receives the signal.

▪ Signal is a signal number.

▪ returns 0 to indicate success, error code otherwise.

▪ Example

▪ pid_t iPid = getpid(); /* Process gets its id.*/

▪ kill(iPid, SIGINT); /* Process sends itself a SIGINT signal (commits suicide) */

Signal Handler

12

▪ A signal handler is used to process signals

▪ Corresponding to each signal there is a signal handler.

▪ Called when a process receives a signal.

▪ When the signal handler returns the process continues,

as if it was never interrupted.

include <stdio.h>

include <signal.h>

Void handle-sigint ()

{

printf (“Caught signals\n”);

}

Int main (){

signal (SIGINT, handle-sigint);

while (1) ;

return 0;

}

User Defined Signal Handlers

include <stdio.h>

include <signal.h>

include <unistd.h>

Void handle-sigint (){

printf (“Caught signals\n”);

exit (0);

}

Int main (){

pid_t pid;

pid = fork ();

If (pid ==0){

signal (SIGINT, handle-sigint);

while (1);

}

else {

printf (“I am killing my child\n”);

kill (pid, SIGINT)

}

}

