' %! N, Politecnico
4 B »Y di Torino
By

W 1859 ," Department of Control and
-\ 1 5
- e Computer Engineering

-

&
2

SMILIeS

re ilientco puter arch tectures
and f ciences

PROCESS MANAGEMENT

PROCESS DEFINITION

SmiLies

Process — a program in execution

process execution must progress in sequential fashion.

No parallel execution of instructions of a single process
Multiple parts

The program code, also called text section

Current activity including program counter, processor registers

Stack containing temporary data

Function parameters, return addresses, local variables
Data section containing global variables

Heap containing memory dynamically allocated during run time

10/12/2024 Process Management

SmiLies

PROCESS STATE

As a process executes, it changes state Process State Diagram (PSD)

New: The process is being created

Running: Instructions are being executed

Waiting: The process is waiting for some event to
occur

admitted interrupt

Ready: The process is waiting to be assigned to a
processor

Terminated: The process has finished execution

scheduler dispatch

I/O or event completion I/0O or event wait

10/12/2024 Process Management

SmiLies

PSD TRANSITIONS

Given N processes, and one processor, at any given Transition 1 occurs when a process discovers that it
time: cannot continue
1 process is in the running state For example it needs to use a portion of shared
memory a now-ready process reserved for its own

M processes can be blocked waiting for a resource to

i . use
become available to resume the execution

N-M-1 are ready to be executed waiting to access the Involuntary Transitions
Voluntary transition (scheduler)
processor (blocking synchronization primitive)

- - — — — — = ——
-~ -~

Blocked

! Involuntary Transition
\ (another process)

= — e ———————— — —— "

10/12/2024 Process Management

PSD TRANSITIONS

Transition 4 occurs when the event the process was
waiting for occurs

For example, the running process sets free the shared
memory it previously locked, which the blocked
process was waiting for

Involuntary Transitions
(scheduler)

Voluntary transition
(blocking synchronization primitive)

-— e - —— —— = ———
=~

Blocked

! Involuntary Transition
N (another process)

B g

SmiLies

Transitions 2 and 3 are caused by the operating
system

Preemptive scheduler: process is moved from running
to ready after a certain time quantum (time slice) is
expired

Cooperative scheduler: process voluntary moves from
running to ready

10/12/2024

Process Management

SmiLies

PROCESS CONTROL BLOCK (PCB)

process state

10/12/2024

The CPU Manager describes each process using the

PCB containing:
Process state
Program counter
CPU registers
CPU scheduling information
Memory-management information
Accounting information

|/O status information

Example of PCB

process number

program counter

registers

memory limits

list of open files

One PCRB is maintained for each process

process state

process state

process state

process state

process number

process number

process number

process number

program counter

program counter

program counter

program counter

registers

registers

registers

registers

memory limits

memory limits

memory limits

memory limits

list of open files

list of open files

list of open files

list of open files

Process Management

PROCESS REPRESENTATION IN LINUX

Represented by the C structure

struct task struct {

10/12/2024

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling
information */

struct task struct *parent;/* this
process’s parent */

struct list head children; /* this
process’s children */

struct files struct *files;/* list of open
files */

struct mm struct *mm;
of this process */

/* address space

)

NN

struct task_struct
process information

struct task_struct
process information

Process Management

struct task_struct
process information

-

SmiLies

THE CPU SCHEDULER

It is the part of the CPU manager that implements
the process state transitions and decides which
process must run

The goal is to maximize CPU use

Maintains scheduling queues of processes

Ready queue — set of all processes residing in main
memory, ready and waiting to execute

Wait queues — set of processes waiting for an event
(i.e., 1/0)

Processes migrate among the various queues

ready
queue

wait
queue

queue header

head

PCB ,

tail

N

L J

PCB,

SmiLies

registers

-

L J

L J

L

PCB ,
T =
registers
PCBg
T =

head

#

tail

10/12/2024

Process Management

REPRESENTATION OF PROCESS SCHEDULING '!f[[lﬁﬂ!”'

i

ready queue CPU

time slice
expired

child child create child

termination fe——— -

terminates process

wait queue

interrupt interrupt wait for an
occurs wait queue interrupt

I/0 wait queue [« /O request D

10/12/2024

CONTEXT SWITCH

10/12/2024

When CPU switches to another process, the system
must save the state of the old process and load the

saved state for the new process via a context switch executing u /

Context of a process represented in the PCB

Context-switch time is pure overhead; the system
does no useful work while switching

The more complex the OS and the PCB = the longer
the context switch

Time dependent on hardware support

Some hardware provides multiple sets of registers per
CPU =» multiple contexts loaded at once

executing U¥

Process Management

process P,

>idle

SmiLies

operating system process P

interrupt or system call

Y

save state into PCB,

reload state from PCB, 1
interrupt or system call

¢

save state into PCB,

reload state from PCB,,

> idle

executing

~N

> idle

SCHEDULER ACTIVATION

It is called periodically (via timer interrupt) or in response to events

Timer interrupt (systick)

——

Every time the timer expires, and
interrupt is generated. The interrupt
service routine is schedule()

schedule () I I i i i i i

Time slice = max amount of
time a process is allowed on
the CPU

10/12/2024 Process Management

time

PREEM PTIO N UsmiLies

Operation performed to evict a running process from the CPU

Example: upon reaching the end of the time slice, process A is moved from running to ready, while
process B is moved from ready to running

A A O T N A T A S .
Process A - -

Preemption :
Process B \L T- []
schedule () |}] 1 1]]] i]

R ——

o -

Context switch

10/12/2024 Process Management

BLOCKING es

Preemption may take place as a result of an operation the running task performs

Example: Process A is moved to blocked state, while process B is set running

A N O N N A .

Process A []] —
Process B]]

schedule () §]] []]]]

Process A executed an instruction the blocks it

10/12/2024 Process Management

SmiLies

WHAT DOES A PROCESS (OR TASK) LOOK LIKE?

Basic task int persistent data;
Sequence of statements executed once for each
instance of the task (e.g., do_instance()) Task x()
Instance of the task = execution of the function x() {

The task starts with the first instruction of function x() dO_ll’lS tance () ;

The task terminates after the last statement of function }

x()
An initialization function x_init() is executed once for x—lnlt ()
setting up the memory used by task x {

. initialization();

If task x needs to keep in memory data to be used by tia ation();
different instances, global variables shall be used > oo
(e.g., persistent_data) }

10/12/2024 Process Management

SmiLies

WHAT DOES A PROCESS (OR TASK) LOOK LIKE?

Extended task Task x()

It is a function that starts once, and never ends {
int local;

Data can be local variables
Initialization operations are performed once, before

_ initialization () ;
starting the end-less loop

The end-less loop implements the operation of the

o o * — *
task (e.g., do_instance()) tor (i) /* End-less loop */

{
The end-less loop typically contains a statement to WaitEvent () ;
block the task until it is needed (e.g., WaintEvent()) d , v '()
O 1lnstance ;
A certain amount of time is elapsed) T ’

A resource becomes available }

When the task is blocked others may run

10/12/2024 Process Management

SCHEDULING ALGORITHMS

SmiLies

It is the criteria to pick up a process among those ready to make it running
Simplest form of scheduling: Round Robin

Processes are inserted into a FIFO queue {B, F, D, G, A}

The top of the queue is executed (see figure a)

When exiting from running state it is queued to the last position of the queue (see figure b)

current Mext current
process process process

B
F O (3 A O G A B

(a) (s

10/12/2024 Process Management

ROUND ROBIN SCHEDULER

Possible implementation

Schedule (ReadyList R, RunningTask T)
{

T->TCB.state = READY; Running T
save context (T->TCB) ; Task 0
11 T, R); .

append_to_lList{) List of Ready - T T
Q = top of list(R); Tasks R 2 3
restore context (Q->TCB) ; T
O->TCB.state = RUNNING;

} Top of the list

10/12/2024 Process Management

SmiLies

ROUND ROBIN SCHEDULER

Possible implementation

Schedule (ReadyList R, RunningTask T)

{ :
T->TCB.state = READY; Running T Seeo
save context (T->TCB) ; Task 0 ~“~~~~
N~~~~)

append to list(T, R); List of Ready - T T T
Q = top of 1list(R); Tasks R 2 3 0
restore context (Q->TCB) ; T
O->TCB.state = RUNNING;

J Top of the list

10/12/2024 Process Management

SmiLies

ROUND ROBIN SCHEDULER

Possible implementation

Schedule (ReadyList R, RunningTask T)
{

T->TCB.state = READY; Running T Seeo

save context (T->TCB) ; Task 1 ~“~~~~
N~~~~)

d to 1list(T, R); .

append_to_list) List of Ready T - T T

Q = top of list(R); Tasks R 1 3 0

restore context (Q->TCB) ; T

Q->TCB.state = RUNNING;

J Top of the list

10/12/2024 Process Management

SCHEDULING ALGORITHMS

SmiLies

In Round Robin all processes are equal

current Mext Current
process process process
B F O G A F]] A B

(2} (b)
What if B has a more important task to do with respect to the others?

After it run, it has to wait 4 time slices before running again

Solution:
To differentiate processes assigning a weight factor = priority

To adopt a scheduling approach based on priority = priority-based scheduling

10/12/2024 Process Management

SmiLies

PRIORITY-BASED SCHEDULER

Preemption of a running task & context switch
happen only if a ready task exists whose priority is
greater than that of the running task

Schedule (ReadylList R, RunningTask T)

{
Q = top of list(R);

1f(Priority(Q) > Priority(T)) If the running task has priority equal to that of the

{ highest priority ready task preemption does not
T->TCB.state = READY; habben

save context (T->TCB) ;

append_to_list(T, R); Highest priority running task is preempted when it

has to be blocked
restore context (Q->TCB) ;

Q->TCB.state = RUNNING;

10/12/2024 Process Management

SCHEDULING ALGORITHMS W’"

A priority function is defined which returns numerical value T for process p:
T = Priority(p)

Static priority: unchanged for lifetime of p

Dynamic priority: changes at runtime

10/12/2024

SmiLies

TYPE OF SYSTEMS

Non real-time system: computer that has to respond
to external events correctly

X(t)

Example: given x(t) at time t = output y must be
delivered anytime

| Embedded plant
Real-time system: computer that has to respond to
external events both correctly and within a finite, computer y(t+d)
specified period of time called deadline

Example: given x(t) at time t = output y must be
delivered no later than t+d

Right result too late is as bad as giving wrong or no
result

10/12/2024 Process Management

SmiLies

REAL TIME FLAVORS

1 value(finishing time) ‘ value(finishing time)

A process is hard real time if missing its deadline
may cause catastrophic consequences on the
environment under control

non-realtime soft
A process is firm real time if missing its deadline ﬁnishing:ﬁme + ﬂnishing:time
makes the result useless, but missing does not |
cause serious damage
A process is soft real time if meeting its deadline is | value(finishing time) | value(finishing time)

desirable (e.g. for performance reasons) but missing

does not cause serious damage
hard

d, finishing time d, finishing time

10/12/2024 Process Management

REAL TIME VS FAST

T] l

The objec takes to complete

double speed

A

/I/ deadline miss
T ,

10/12/2024 Process Management

Department of Control and
Computer Engineering

SMiLIesS
re ilientco puter arch tectures QUESTIONS?

and ' f- “ciences

THANKYOU!

	Slide 1: PROCESS MANAGEMENT
	Slide 2: PROCESS DEFINITION
	Slide 3: Process state
	Slide 4: PSD transitions
	Slide 5: PSD transitions
	Slide 6: Process Control Block (PCB)
	Slide 7: Process Representation in Linux
	Slide 8: The CPU scheduler
	Slide 9: Representation of Process Scheduling
	Slide 10: Context Switch
	Slide 11: SCHEDULER ACTIVATION
	Slide 12: Preemption
	Slide 13: Blocking
	Slide 14: What does a process (or task) look like?
	Slide 15: What does a process (or task) look like?
	Slide 16: Scheduling algorithms
	Slide 17: Round robin scheduler
	Slide 18: Round robin scheduler
	Slide 19: Round robin scheduler
	Slide 20: Scheduling algorithms
	Slide 21: Priority-based scheduler
	Slide 22: Scheduling algorithms
	Slide 23: Type of systems
	Slide 24: Real time flavors
	Slide 25: Real time vs Fast
	Slide 26

