¢ :?2 '\!‘5 CF;oIitecnico
e ol i Torino
",MSE

W 1859 ," Department of Control and
-\ 1 5
‘ -\ e Computer Engineering

-

&

SMILIeS

re ilientco puter arch tectures
and f ciences

CROSS PLATFORM
DEVELOPMENT

WHAT IS CROSS DEVELOPMENT

» Cross development is the process of
developing code on one machine — the host,
to run on another machine — the target

» The host is a normal, powerful machine Host System
running an operating system

Target System

Application

Operating System

» The target is often a single board computer Cross compiler
that may have no or limited software and

hardware resources Debugger
(Local/Remote)

Emulator Bootloader

Board Programmer

Ethernet/Serial/Custom (BDM/JTAG)

10/7/2024 Cross platform development

FEATURES OF CROSS DEVELOPMENT ’!f[[lﬁfh"

The code created can’t run on the host system
Sometimes an emulator is used

Special tools are required
The standard PC compiler won’t do!

The code must be moved from the host to the board

10/7/2024 Cross platform development

WHY CROSS DEVELOP?

SmiLies

Code is cross developed for several reasons
Frequently the development can’t be done on the board
The board has no disc, compiler, screen etc
The development environment is very powerful and fast
Games developers do this

Often the development might be done by a team on networked machines

10/7/2024 Cross platform development

CROSS DEVELOPMENT TOOLS

SmiLies

To do cross development you need special tool kits, sometimes called toolchains. These consist of

Cross compiler, assembler and linkers
Programming and conversion software
Remote debuggers

Useful utilities

Files to dump or strip binary files, all in binutils.

10/7/2024 Cross platform development

SmiLies

COMPILER

Before we understand what cross compilers do it might be worth reviewing what compilers do

They take an input text source program file and output an executable binary output file (or some error
messages!)

Source

Compiler E>.<ecutable
Program inary
file o

10/7/2024 Cross platform development

THE COMPILATION PROCESS IN DETAIL ﬂ“{ﬁfh‘f

cc —flags myfile.c thisfile.o \

Lnk/loading

> Assembleror _, Relocatable _ __ __ _ Executable

_________ >» Text =+ = == ==)))
Object format Object file Binary and
.map file
#includes | Object files
.h header files Library file
#defines *optional

Start-up code

10/7/2024 Cross platform development

EXECUTABLE FORMATS

SmiLies

» There are a number of different exectuable formats

» A.out isthe traditional UNIX format

» EIf — Executable and Linking Format

» COFF — Common Object File Format

» Plus lots of others

10/7/2024 Cross platform development

MAP FILE

A .map file is a detailed report generated by the linker during the build process of a program.

It provides valuable information about the memory layout and symbol addresses in the final
executable

Memory layout (see later)

Symbol Table (the addresses of all global variables, functions, and objects)

Section Mapping (see later)

Stack and Heap Usage (if available)

Function Sizes: the size of each function and its location in memory

This file is useful for debugging, optimizing memory usage, and understanding how the linker has
allocated sections of code and data in memory.

10/7/2024 Cross platform development

CROSS COMPILER

» Target system (e.g., ARM) = Host system (e.g., x86)

Source Code
(.C)

Parser, g Standard C library ,zu System Map
(.C = Sarm) (libstdc.a) (.map)

Executable

Assembler, g, Linker, g, (.0Utay)
(.SaArRM™ -Onrw) (.0prM™ -OUTARM)

Object Code

(.0nrm)

10/7/2024 Cross platform development

WHAT IS CROSS DEVELOPMENT

Host System Target system
Firmware

Flash (NOR)

Source Code (.c)

Cross compiler

RAM

Memory

(DRAM/SRAM) Mass Nlemory
Flash (NAND)

A\ 4

Executable (.out)

A

y

Board Programmer

Ethernet/Serial/Custom (BDM/JTAG)

10/7/2024 Cross platform development

SmiLies

Argv and env vars
Memory Area | Section Section Write Initial Contents
Name Type Operation Value

stack

Program text Code Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized .data Data Yes Yes Initialized global and static data

data

Uninitialized .bss Data Yes No Global data whose initial value is not

data specified (zero initialized). BSS stands for

Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, reallog, ...)

.data
Stack -- -- Yes No Dynamic area required for program
execution
Command -- Data Yes Yes Area where command line arguments are
line stored. It is the initial part of the stack

10/7/2024 Cross platform development

SmiLies

Memory Area | Section Section Write Initial Contents
Name Type Operation Value

const int
int beta

char tmp . Program text Code Stores machine code
14
. - Constants .rodata Data Yes Yes Constant data. This section may not be
int foo(int X) oroduced.
" Initialized .data Data Yes Yes Initialized global and static data
char *ptr; data
tr = (char *)malloc (X);

P () () ! Uninitialized .bss Data Yes No Global data whose initial value is not

} data specified (zero initialized). BSS stands for

Block Started by Symbol

-- -- Yes No Dynamic area allocation used by library

in in (in r har ** argv Heap
t ma (t a gc, cha arg) functions (malloc, reallog, ...)

{

Stack -- -- Yes No Dynamic area required for program
execution
int a = foo (3);
Command -- Data Yes Yes Area where command line arguments are
} line stored. It is the initial part of the stack

10/7/2024 Cross platform development

PROGRAMS IN MEMORY

SmiLies

const int alfa=25 2 Memory Area | Section Section Write Initial Contents
. Name Type Operation Value
int beta = 44;

char tmp; Program
int foo(int X) Constants
{ Initialized
char *ptr; data
= * R
e (char imaL S0k Xl Uninitialized
} data
int main(int argc, char ** argv) Heap
{
Stack
int a = foo (3);
Command
) line

10/7/2024 Cross platform development

Stores machine code

Constant data. This section may not be
produced.

Initialized global and static data

Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Dynamic area allocation used by library
functions (malloc, reallog, ...)

Dynamic area required for program
execution

Area where command line arguments are
stored. It is the initial part of the stack

PROGRAMS IN MEMORY

SmiLies

const int alfa=25 2 Memory Area | Section Section Write Initial Contents
. Name Type Operation Value
int beta = 44;

char tmp; Program
int foo(int X) Constants
{ Initialized
char *ptr; data
= * R
e (char imaL S0k Xl Uninitialized
} data
int main(int argc, char ** argv) Heap
{
Stack
int a = foo (3);
Command
) line

10/7/2024 Cross platform development

Stores machine code

Constant data. This section may not be
produced.

Initialized global and static data

Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Dynamic area allocation used by library
functions (malloc, reallog, ...)

Dynamic area required for program
execution

Area where command line arguments are
stored. It is the initial part of the stack

PROGRAMS IN MEMORY

SmiLies

const int alfa=25 2 Memory Area | Section Section Write Initial Contents
. Name Type Operation Value
int beta = 44;

char tmp; Program
int foo(int X) Constants
{ Initialized
nitialize
Sl *ptr; data
r = har
pt (C ° Uninitialized
} data
int main (int argc, char ** Heap
{
Stack
int a = foo (3);
Command
} line

10/7/2024 Cross platform development

Stores machine code

Constant data. This section may not be
produced.

Initialized global and static data

Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Dynamic area allocation used by library

functions (malloc, reallog, ...)

Dynamic area required for program
execution

Area where command line arguments are
stored. It is the initial part of the stack

PROGRAMS IN MEMORY

SmiLies

const int alfa=25 2 Memory Area | Section Section Write Initial Contents
. Name Type Operation Value
int beta = 44;

char tmp; Program
int foo(int X) Constants
{ Initialized
char *ptr; data
= * R
e (char JMELLOE) ¢ Uninitialized
} data
int main(int argc, char ** argv) Heap
{
Stack
int a = foo (3);
Command
) line

10/7/2024 Cross platform development

Stores machine code

Constant data. This section may not be
produced.

Initialized global and static data

Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Dynamic area allocation used by library
functions (malloc, reallog, ...)

Dynamic area required for program
execution

Area where command line arguments are
stored. It is the initial part of the stack

PROGRAMS IN MEMORY

SmiLies

const int alfa=25 2 Memory Area | Section Section Write Initial Contents
. Name Type Operation Value
int beta = 44;

char tmp; Program
int foo(int X) Constants
{ Initialized
char *ptr; data
= * R
e (char imaL S0k Xl Uninitialized
} data
int main(int argc, char ** argv) Heap
{
Stack
int a = foo (3);
Command
) line

10/7/2024 Cross platform development

Stores machine code

Constant data. This section may not be
produced.

Initialized global and static data

Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Dynamic area allocation used by library
functions (malloc, reallog, ...)

Dynamic area required for program
execution

Area where command line arguments are
stored. It is the initial part of the stack

Department of Control and
Computer Engineering

SMiLIesS
re ilientco puter arch tectures QUESTIONS?

and ' f- “ciences

THANKYOU!

	Slide 1: CROSS PLATFORM DEVELOPMENT
	Slide 2: What is cross development
	Slide 3: Features of cross development
	Slide 4: Why cross develop?
	Slide 5: Cross development tools
	Slide 6: COMPILER
	Slide 7: The compilation process IN detail
	Slide 8: Executable formats
	Slide 9: MAP FILE
	Slide 10: Cross compiler
	Slide 11: What is cross development
	Slide 12: PROGRAMS in memory
	Slide 13: PROGRAMS in memory
	Slide 14: PROGRAMS in memory
	Slide 15: PROGRAMS in memory
	Slide 16: PROGRAMS in memory
	Slide 17: PROGRAMS in memory
	Slide 18: PROGRAMS in memory
	Slide 19

