
PROCESS MANAGEMENT
STEFANO DI CARLO

PROCESS DEFINITION

 Process – a program in execution

 process execution must progress in sequential fashion.

 No parallel execution of instructions of a single process

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

10/12/2024 2Process Management

PROCESS STATE

 As a process executes, it changes state

 New: The process is being created

 Running: Instructions are being executed

 Waiting: The process is waiting for some event to
occur

 Ready: The process is waiting to be assigned to a
processor

 Terminated: The process has finished execution

 Process State Diagram (PSD)

310/12/2024 Process Management

PSD TRANSITIONS

 Given N processes, and one processor, at any given
time:

 1 process is in the running state

 M processes can be blocked waiting for a resource to
become available to resume the execution

 N-M-1 are ready to be executed waiting to access the
processor

 Transition 1 occurs when a process discovers that it
cannot continue

 For example it needs to use a portion of shared
memory a now-ready process reserved for its own
use

4
10/12/2024 Process Management

PSD TRANSITIONS

 Transition 4 occurs when the event the process was
waiting for occurs

 For example, the running process sets free the shared
memory it previously locked, which the blocked
process was waiting for

 Transitions 2 and 3 are caused by the operating
system

 Preemptive scheduler: process is moved from running
to ready after a certain time quantum (time slice) is
expired

 Cooperative scheduler: process voluntary moves from
running to ready

5
10/12/2024 Process Management

PROCESS CONTROL BLOCK (PCB)

 The CPU Manager describes each process using the
PCB containing:

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

 Example of PCB

 One PCB is maintained for each process

6
10/12/2024 Process Management

PROCESS REPRESENTATION IN LINUX

Represented by the C structure

struct task_struct {

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling

information */

struct task_struct *parent;/* this

process’s parent */

struct list_head children; /* this

process’s children */

struct files_struct *files;/* list of open

files */

struct mm_struct *mm; /* address space

of this process */

}

10/12/2024 Process Management 7

THE CPU SCHEDULER

 It is the part of the CPU manager that implements
the process state transitions and decides which
process must run

 The goal is to maximize CPU use

 Maintains scheduling queues of processes

 Ready queue – set of all processes residing in main
memory, ready and waiting to execute

 Wait queues – set of processes waiting for an event
(i.e., I/O)

 Processes migrate among the various queues

8
10/12/2024 Process Management

REPRESENTATION OF PROCESS SCHEDULING

10/12/2024 Process Management 9

CONTEXT SWITCH

 When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is pure overhead; the system
does no useful work while switching

 The more complex the OS and the PCB ➔ the longer
the context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per
CPU ➔ multiple contexts loaded at once

10/12/2024 Process Management 10

SCHEDULER ACTIVATION

 It is called periodically (via timer interrupt) or in response to events

11

time

schedule()

Timer interrupt (systick)

Time slice = max amount of
time a process is allowed on
the CPU

Every time the timer expires, and
interrupt is generated. The interrupt
service routine is schedule()

10/12/2024 Process Management

PREEMPTION

 Operation performed to evict a running process from the CPU

 Example: upon reaching the end of the time slice, process A is moved from running to ready, while
process B is moved from ready to running

12

time

Process A

Process B

schedule()

Context switch

Preemption

10/12/2024 Process Management

BLOCKING

 Preemption may take place as a result of an operation the running task performs

 Example: Process A is moved to blocked state, while process B is set running

13

time

Process A

Process B

schedule()

Process A executed an instruction the blocks it

10/12/2024 Process Management

WHAT DOES A PROCESS (OR TASK) LOOK LIKE?

 Basic task

 Sequence of statements executed once for each
instance of the task (e.g., do_instance())

 Instance of the task = execution of the function x()

 The task starts with the first instruction of function x()

 The task terminates after the last statement of function
x()

 An initialization function x_init() is executed once for
setting up the memory used by task x

 If task x needs to keep in memory data to be used by
different instances, global variables shall be used
(e.g., persistent_data)

14

int persistent_data;

Task x()

{

 do_instance();

}

x_init()

{

 initialization();

 ...

}

10/12/2024 Process Management

WHAT DOES A PROCESS (OR TASK) LOOK LIKE?

 Extended task

 It is a function that starts once, and never ends

 Data can be local variables

 Initialization operations are performed once, before
starting the end-less loop

 The end-less loop implements the operation of the
task (e.g., do_instance())

 The end-less loop typically contains a statement to
block the task until it is needed (e.g., WaintEvent())

 A certain amount of time is elapsed

 A resource becomes available

 …

 When the task is blocked others may run

15

Task x()

{

 int local;

 initialization();

 for (;;) /* End-less loop */

 {

 WaitEvent();

 do_instance();

 }

}

10/12/2024 Process Management

SCHEDULING ALGORITHMS

 It is the criteria to pick up a process among those ready to make it running

 Simplest form of scheduling: Round Robin

 Processes are inserted into a FIFO queue {B, F, D, G, A}

 The top of the queue is executed (see figure a)

 When exiting from running state it is queued to the last position of the queue (see figure b)

16
10/12/2024 Process Management

ROUND ROBIN SCHEDULER

 Possible implementation

17

Schedule(ReadyList R, RunningTask T)

{

T->TCB.state = READY;

save_context(T->TCB);

append_to_list(T, R);

Q = top_of_list(R);

restore_context(Q->TCB);

Q->TCB.state = RUNNING;

}

T0

T1 T2 T3

Running
Task T

List of Ready
Tasks R

Initial Condition

Top of the list

10/12/2024 Process Management

ROUND ROBIN SCHEDULER

 Possible implementation

18

Schedule(ReadyList R, RunningTask T)

{

T->TCB.state = READY;

save_context(T->TCB);

append_to_list(T, R);

Q = top_of_list(R);

restore_context(Q->TCB);

Q->TCB.state = RUNNING;

}

T0

T1 T2 T3

Running
Task T

List of Ready
Tasks R

Initial Condition

Top of the list

T0

10/12/2024 Process Management

ROUND ROBIN SCHEDULER

 Possible implementation

19

Schedule(ReadyList R, RunningTask T)

{

T->TCB.state = READY;

save_context(T->TCB);

append_to_list(T, R);

Q = top_of_list(R);

restore_context(Q->TCB);

Q->TCB.state = RUNNING;

}

T1

T1 T2 T3

Running
Task T

List of Ready
Tasks R

Initial Condition

Top of the list

T0

10/12/2024 Process Management

SCHEDULING ALGORITHMS

 In Round Robin all processes are equal

 What if B has a more important task to do with respect to the others?

 After it run, it has to wait 4 time slices before running again

 Solution:

 To differentiate processes assigning a weight factor → priority

 To adopt a scheduling approach based on priority → priority-based scheduling

20
10/12/2024 Process Management

PRIORITY-BASED SCHEDULER

 Preemption of a running task & context switch
happen only if a ready task exists whose priority is
greater than that of the running task

 If the running task has priority equal to that of the
highest priority ready task preemption does not
happen

 Highest priority running task is preempted when it
has to be blocked

21

Schedule(ReadyList R, RunningTask T)

{

Q = top_of_list(R);

if(Priority(Q) > Priority(T))

{

T->TCB.state = READY;

save_context(T->TCB);

append_to_list(T, R);

restore_context(Q->TCB);

Q->TCB.state = RUNNING;

}

}

10/12/2024 Process Management

SCHEDULING ALGORITHMS

 A priority function is defined which returns numerical value T for process p:

 T = Priority(p)

 Static priority: unchanged for lifetime of p

 Dynamic priority: changes at runtime

22
10/12/2024 Process Management

TYPE OF SYSTEMS

 Non real-time system: computer that has to respond
to external events correctly

 Example: given x(t) at time t → output y must be
delivered anytime

 Real-time system: computer that has to respond to
external events both correctly and within a finite,
specified period of time called deadline

 Example: given x(t) at time t → output y must be
delivered no later than t+d

 Right result too late is as bad as giving wrong or no
result

23

Embedded
computer

plant

y(t+d)

x(t)

10/12/2024 Process Management

REAL TIME FLAVORS

 A process is hard real time if missing its deadline
may cause catastrophic consequences on the
environment under control

 A process is firm real time if missing its deadline
makes the result useless, but missing does not
cause serious damage

 A process is soft real time if meeting its deadline is
desirable (e.g. for performance reasons) but missing
does not cause serious damage

24

6

Univ. Paderborn

Heinz Nixdorf Institut

F.J. Rammig

11/118SBCCI‘01

Hard RT vs. Firm vs. Soft RT

.

value(finishing time)

di

di
di

non-realtime soft

firm hard

value(finishing time)

finishing time finishing time

value(finishing time) value(finishing time)

finishing time finishing time

Univ. Paderborn

Heinz Nixdorf Institut

F.J. Rammig

12/118SBCCI‘01

Typical Hard RT Activities:

Typical Hard RT Activities:

• sensory data acquisition

• detection of critical conditions

• actuator servoing

• low-level control of critical system components

Typical application areas:

automotive : power-train control, air-bag control,

steer by wire, brake by wire

aircraft : engine control, aerodynamic control

.

10/12/2024 Process Management

REAL TIME VS FAST

 The objective of a real-time system is to guarantee the timing behavior of each individual process

 The objective of a fast system is to minimize the average time of a set of processes takes to complete

25

Critical section

Critical section

10/12/2024 Process Management

THANK YOU!

QUESTIONS?

	Slide 1: PROCESS MANAGEMENT
	Slide 2: PROCESS DEFINITION
	Slide 3: Process state
	Slide 4: PSD transitions
	Slide 5: PSD transitions
	Slide 6: Process Control Block (PCB)
	Slide 7: Process Representation in Linux
	Slide 8: The CPU scheduler
	Slide 9: Representation of Process Scheduling
	Slide 10: Context Switch
	Slide 11: SCHEDULER ACTIVATION
	Slide 12: Preemption
	Slide 13: Blocking
	Slide 14: What does a process (or task) look like?
	Slide 15: What does a process (or task) look like?
	Slide 16: Scheduling algorithms
	Slide 17: Round robin scheduler
	Slide 18: Round robin scheduler
	Slide 19: Round robin scheduler
	Slide 20: Scheduling algorithms
	Slide 21: Priority-based scheduler
	Slide 22: Scheduling algorithms
	Slide 23: Type of systems
	Slide 24: Real time flavors
	Slide 25: Real time vs Fast
	Slide 26

