
THE ELF FILE FORMAT
STEFANO DI CARLO

ELF FILE FORMAT

 The a.out (https://en.wikipedia.org/wiki/A.out) format served the Unix community well for over 10
years.

 However, to better support cross-compilation, dynamic linking, initializer/finalizer (e.g., the
constructor and destructor in C++) and other advanced system features, a.out has been replaced by
the elf file format.

 Elf stands for “Executable and Linking Format.”

 Elf has been adopted by FreeBSD and Linux as the current standard.

10/7/2024 The ELF file format 2

https://en.wikipedia.org/wiki/A.out

ELF STRUCTURE DUAL NATURE

 Compilers, assemblers, and linkers treat the file as a
set of logical sections described by a section header
table.

 The system loader treats the file as a set of
segments described by a program header table.

 A single segment usually consist of several sections.
E.g., a loadable read-only segment could contain
sections for executable code, read-only data, and
symbols for the dynamic linker.

 Relocatable files have section header tables.
Executable files have program header tables. Shared
object files have both.

 Sections are intended for further processing by a
linker, while the segments are intended to be
mapped into memory.

10/7/2024 The ELF file format 3

ELF FILE TYPES

 Elf defines the format of executable binary files.

 There are four different types:

 Relocatable: created by compilers or assemblers. Need to be processed by the linker before running.

 Shared object: shared library containing both symbol information for the linker and directly runnable code
for run time.

 Executable: have all relocation done and all symbol resolved except perhaps shared library symbols that
must be resolved at run time.

 Core file: a core dump file.

10/7/2024 The ELF file format 4

RELOCATABLE FILES

 A relocatable or object file is a collection of sections.

 Each section contains a single type of information, such as:

 program code

 read-only data,

 read/write data

 relocation entries: records used to adjust addresses and symbols in the program during linking

 Symbols, i.e., a description of variables or functions stored in the ELF file including simple information such
as size, value, name, etc.

 Every address is defined relative to a section

 Therefore, a procedure’s entry point is relative to the program code section that contains that procedure’s
code.

10/7/2024 The ELF file format 5

SHARED OBJECTS

 A shared object, typically with a .so extension (e.g., libxyz.so), is a file that contains code and data
intended to be shared by multiple programs at runtime.

 It is commonly used for dynamic linking, where a program can load and link to these shared libraries
either at load time or during execution.

 The key characteristics are:

 It contains relocatable code, allowing it to be loaded at different memory addresses.

 It includes exported symbols (functions or variables) that can be referenced by other programs.

 It reduces memory usage and binary size by sharing common code across multiple programs.

10/7/2024 The ELF file format 6

EXECUTABLES

 An executable is very similar to a shared object

 It can be loaded at a specific address in memory.

 It has a function that is called when a program starts.

 _start() run first in an executable.

10/7/2024 The ELF file format 7

CORE FILES

 An ELF core file is a special type of file that contains a snapshot of a program's memory and execution
state at the moment it crashes or is terminated unexpectedly.

 It is typically generated by the operating system when a program encounters a serious error, such as a
segmentation fault.

 Key features of an ELF core file:

 Process State: It includes the program's memory (stack, heap, data segments) and processor registers at the
time of the crash.

 Debugging Use: Core files are used for post-mortem debugging, allowing developers to analyze the state of
the program when it crashed to determine the cause of the error.

 Core files are often analyzed using debugging tools like gdb to trace the cause of a crash and diagnose
software bugs.

10/7/2024 The ELF file format 8

ELF LINKING PROCESS

ELF Header

Section-Header Table

Section 1 Data

Section 2 Data

…
Section n Data

ELF Header

Section-Header Table

Section 1 Data

Section 2 Data

…
Section n Data

ELF Header

Program-Header Table

Segment 1 Data

Segment 2 Data

…
Segment n Data

Object File

Object File

Executable File

10/7/2024 The ELF file format 9

ELF HEADER

 The Elf header is always at offset zero of the file.

 The program header table and the section header table’s offset in the file are defined in the ELF
header.

 The elf format can support two different address sizes:

 32 bits

 64 bits

10/7/2024 The ELF file format 10

ELF HEADER

10/7/2024 11The ELF file format

e_ident

e_type

e_machine e_version e_entry

ELF HEADER

10/7/2024 12The ELF file format

e_phoff e_shoff

e_flags

e_ehsize

e_phentsize

e_phnum

e_shentsize

e_shnum

e_shstrndx

ELF HEADER

10/7/2024 13The ELF file format

variable Size(byte) Data(Hex [Dex])

e_ident 16 7f 45 4c 46 02 01 01 00

e_type 2 2 [2]

e_machine 2 3e [64]

e_version 4 1 [1]

e_entry 8 40 04 40 [4,195,392]

e_phoff 8 40 [64]

e_shoff 8 11 a0 [4512]

e_flags 4 0 [0]

e_ehsize 2 40 [64]

e_phentsize 2 38 [56]

e_phnum 2 9 [9]

e_shentsize 2 40 [64]

e_shnum 2 1e [30]

e_shstrndx 2 1b [27]

SECTION HEADER TABLE

 Contains information about every part of an ELF file (except the ELF Header, Program Header Table ,
Section Header Table itself).

 List of section header structures, each defining a different section in the ELF file.

10/7/2024 The ELF file format 14

SECTION HEADER TABLE

 ELF header contains the file offset of the section header table

10/7/2024 The ELF file format 15

SECTIONS AND THE SECTION HEADER TABLE

 File offset 0x140
(.data section offset 0x120 + list value offset 0x20)

10/7/2024 The ELF file format 16

FLAGS IN SECTION HEADER

 WRITE: This section contains data that is writable during process execution.

 ALLOC: This section occupies memory during process execution.

 EXECINSTR: This section contains executable machine instructions.

10/7/2024 The ELF file format 17

VARIOUS SECTIONS

 .text:

 This section holds executable instructions of a program.

 Type: PROGBITS

 Flags: ALLOC + EXECINSTR

 .data:

 This section holds initialized data that contributes to the program’s image.

 Type: PROGBITS

 Flags: ALLOC + WRITE

10/7/2024 The ELF file format 18

VARIOUS SECTIONS

 .rodata:

 This section holds read-only data.

 Type: PROGBITS

 Flags: ALLOC

 .bss :

 This section holds uninitialized data that contributed to the program’s image. By definition, the system will
initialize the data with zero when the program begins to run.

 Type: NOBITS

 Flags: ALLOC + WRITE

10/7/2024 The ELF file format 19

VARIOUS SECTIONS

 .rel.text, .rel.data, and .rel.rodata:

 These contain the relocation information for the corresponding text or data sections.

 Type: REL

 Flags: ALLOC is turned on if the file has a loadable segment that includes relocation.

 .symtab:

 This section hold a symbol table.

 .strtab:

 This section holds strings.

10/7/2024 The ELF file format 20

VARIOUS SECTIONS

 .init:

 This section holds executable instructions that contribute to the process initialization code.

 Type: PROGBITS

 Flags: ALLOC + EXECINSTR

 .fini:

 This section hold executable instructions that contribute to the process termination code.

 Type: PROGBITS

 Flags: ALLOC + EXECINSTR

 C does not need these two sections. However, C++ needs them.

10/7/2024 The ELF file format 21

VARIOUS SECTIONS

 .interp:

 This section holds the pathname of a program interpreter.

 Type: ALLOC

 Flags: PROGBITS

 If this section is present, rather than running the program directly, the system runs the interpreter and
passes it the elf file as an argument.

 For many years (used in a.out), UNIX has had self-running interpreted text files, using

 #! /bin/csh as the first line of the file.

 Elf extends this facility to interpreters that run nontext programs.

 In practice, this is used to run the run-time dynamic linker to load the program and to link in any required
shared libraries.

10/7/2024 The ELF file format 22

VARIOUS SECTIONS

 .debug:

 This section holds symbolic debugging information.

 Type: PROGBIT

 .line:

 This section holds line number information for symbolic debugging, which describes the correspondence
between the program source and the machine code (ever used gdb?)

 Type: PROGBIT

 .comment

 This section may store extra information.

10/7/2024 The ELF file format 23

VARIOUS SECTIONS

 .got:

 This section holds the global offset table.

 We will explain got when we present shared library.

 Type: PROGBIT

 .plt:

 This section holds the procedure linkage table.

 Type: PROGBIT

 .note:

 This section contains some extra information.

10/7/2024 The ELF file format 24

A TYPICAL
RELOCATABLE FILE.

10/7/2024 The ELF file format 25

STRING TABLE

 String table sections hold null-terminated character sequences, commonly called strings.

 The object file uses these strings to represent symbol and section names.

 We use an index into the string table section to reference a string.

 The reason why we separate symbol names from symbol tables is that in C or C++, there is no
limitation on the length of a symbol.

10/7/2024 The ELF file format 26

SYMBOL TABLE

 An object file’s symbol table holds
information needed to locate and
relocate a program’s symbolic
definition and references.

 A symbol table index is a subscript
into this array.

If a definition is available
for an undefined weak
symbol, the linker will use
it. Otherwise, the value
defaults to 0.

The section relative to which the symbol
is defined. (e.g., the function entry points
are defined relative to .text)

10/7/2024 The ELF file format 27

RELOCATION TABLE

 Relocation is the process of connecting symbolic references with symbolic definitions.

 Relocatable files must have information that describes how to modify their section contents.

 A relocation table consists of many relocation structures.

10/7/2024 The ELF file format 28

RELOCATION STRUCTURE

Struct {

 R_offset;

 This field gives the location at which to apply the relocation.

 For a relocatable file, the value is the byte offset from the beginning of the section to the storage unit affect
by the relocation.

 For an executable file and shared object, the value is the virtual address of the storage unit affected by the
relocation.

10/7/2024 The ELF file format 29

RELOCATION STRUCTURE

R_info;

 This field gives both the symbol table index with respect to which the relocation must be made and the type
of relocation to apply.

R_addend;

 This field specifies a constant addend used to compute the value to be stored into the relocation field.

}

10/7/2024 The ELF file format 30

EXECUTABLE FILES

 An executable file usually has only a few segments. E.g.,

 A read-only one for the code.

 A read-only one for read-only data.

 A read/write one for read/write data.

 All of the loadable sections are packed into the appropriate segments so that the system can map the
file with just one or two operations.

 E.g., If there is a .init and .fini sections, those sections will be put into the read-only text segment.

10/7/2024 The ELF file format 31

PROGRAM HEADER

 The Program Header Table contains information about the segments in an ELF file and how to load
them into memory (segments : contiguous ranges of an ELF file that have the same memory
attribution.)

10/7/2024 The ELF file format 32

THE TYPES IN PROGRAM HEADER

 This field tells what kind of segment this array element describes:

 PT_LOAD: This segment is a loadable segment.

 PT_DYNAMIC: This array element specifies dynamic linking information.

 PT_INTERP: This element specified the location and size of a null-terminated path name to invoke as an
interpreter.

10/7/2024 The ELF file format 33

PROGRAM HEADER

10/7/2024 The ELF file format 34

SEGMENTS AND THE PROGRAM HEADER TABLE

 Only used for executable, shared libraries and core files

10/7/2024 The ELF file format 35

SEGMENTS AND THE PROGRAM HEADER TABLE

10/7/2024 The ELF file format 36

SEGMENTS AND THE PROGRAM HEADER TABLE

 program header itself.

“INTERP” segment. That only includes the
name of the program interpreter

10/7/2024 The ELF file format 37

SEGMENTS AND THE PROGRAM HEADER TABLE

 program header itself.

“INTERP” segment. That only includes the
name of the program interpreter

The executable contains the name of
the program interpreter

10/7/2024 The ELF file format 38

SEGMENTS AND THE PROGRAM HEADER TABLE

DYNAMIC segment used for dynamic linking.

Special segments for Vendor-specific
information

10/7/2024 The ELF file format 39

SEGMENTS AND THE PROGRAM HEADER TABLE

LOAD segment
: Loadable program segment

Note Segment

: The array element specifies the location
and size of auxiliary information

10/7/2024 The ELF file format 40

THANK YOU!

QUESTIONS?

	Slide 1: THE ELF FILE FORMAT
	Slide 2: Elf File Format
	Slide 3: ELF Structure DUAL NATURE
	Slide 4: Elf File Types
	Slide 5: Relocatable Files
	Slide 6: SHARED OBJECTS
	Slide 7: EXECUTABLES
	Slide 8: CORE FILES
	Slide 9: ELF LINKING PROCESS
	Slide 10: ELF Header
	Slide 11: ELF Header
	Slide 12: ELF HEADER
	Slide 13: ELF HEADER
	Slide 14: Section Header TABLE
	Slide 15: Section Header TABLE
	Slide 16: Sections and the Section Header Table
	Slide 17: Flags in Section Header
	Slide 18: Various Sections
	Slide 19: Various Sections
	Slide 20: Various Sections
	Slide 21: Various Sections
	Slide 22: Various Sections
	Slide 23: Various Sections
	Slide 24: Various Sections
	Slide 25: A typical relocatable file.
	Slide 26: String Table
	Slide 27: Symbol Table
	Slide 28: Relocation Table
	Slide 29: Relocation Structure
	Slide 30: Relocation Structure
	Slide 31: Executable Files
	Slide 32: Program Header
	Slide 33: The Types in Program Header
	Slide 34: Program Header
	Slide 35: Segments and The Program Header Table
	Slide 36: Segments and The Program Header Table
	Slide 37: Segments and The Program Header Table
	Slide 38: Segments and The Program Header Table
	Slide 39: Segments and The Program Header Table
	Slide 40: Segments and The Program Header Table
	Slide 41

