ARM

The ARM Architecture

m [ntroduction to ARM Ltd

Programmers Model
Instruction Set
System Design

Development Tools

39v10 The ARM Architecture 2

ARM Ltd

m Founded in November 1990
= Spun out of Acorn Computers

m Designs the ARM range of RISC processor
cores

m Licenses ARM core designs to semiconductor
partners who fabricate and sell to their
customers.

s ARM does not fabricate silicon itself

m Also develop technologies to assist with the
design-in of the ARM architecture

m Software tools, boards, debug hardware,
application software, bus architectures,
peripherals etc

39v10 The ARM Architecture 3

ARM Partnership Model

Wikrwrve BARCO SOTA [FJ) LZASHLING CoWare

-‘;A‘ll .
DNP 7 Aofinte Technology SIEMENS NSW — ’ VIt icentiinn iNNOVEDA. Computex
Waclolech * v .
Aot . Ay 4% COMIT® YOGITLCH g)
"“’V"ND ay P srsiews oocwe ADS 'm"‘“’“,"" =i WindRver Sophia

N e TRy A SySthﬂS
: Aezar ARCADIA ¥ AXIS
4 \“)\\ @ j systems ‘,‘~ . e .
N TOPPAN = A Verisity: Aptix
. wipRg SEonumCHR b ; Quacomwa - EJZTEIC GoobricH e——
3 -l 5 nt nologh e
£ i m“AcA AW pjffrsy EmicssoN B EAD ST e Miant
DR - OKI MOTOROLA ADMiek NEC A s
HOYA' L MAZ G womes Tosuisa ntersit gz any B A synupsys
SC’MLOP(gP & MICRONAS PHILIPS @ e umwiC IKOS
e 3 E@*ﬁﬂic TALITY Epsm O 'A"-':"“:'fﬁ""“ ——)(tlcu ’l R’d e @ ""!.’
Daghu;ég FLAE> TRONICS m' e M uomu»:s LAUTERBACH A - \
\/n . ‘/S Semiconductor 2 m— QTL‘U\S AKM -
; waus oG AYf o

FIRMWARE SYSTENS @) 1221 s Panasonic S8 mterniche Microsoft
B agere ies, i

i . tcchnoloqms ing.
- ZEEVO in
m (Lf CER8F avunnh) e SHARD tel emau\ze | f

p === i RONTIES
Ai S ~rbpt i Q‘M_.‘ YAMAHA 3 @ I== ”\;‘ramd S;)_riv srerac F
- PRECISE "~ o M A =lriscend. JUEMN, pac INTERTRUST
ACGESS Rt 1Q Qoftint cogency) “.IM\E{;&_,‘_‘_“, infineon (e ZARMINK \bﬁeo) YHE METATSUET SVELITY =
L) GEOWORKS e I \”“\l “ v fc"-lf[x?\:;.lfﬂnl a7 : -,. N . ": - “ : ER'CSSON ’
: g 4 Tao bz&tum Silicon Wave RESONEXT cinivonds ~ | & corporation

B KADAK oo s B - ;é_':_’“ 7 OSE ¢ : e |10 2Udho

moft JAVA T €3 Bluetooth™ symbaan o

t:lirm..__“ & AX- m’ symbian w
émm wicnowane: @SUN. ETNOTEAM —

smbedded

Gt onuxwores [OMEET you pueMICALINDUSTRY COUTD.

39v10 The ARM Architecture 4

7. i.'m
1'{".«(-
oo symmetricom | pp CPS]A\A

ARM Powered Products

39v10 The ARM Architecture 5

Intellectual Property

m ARM provides hard and soft views to licencees

= RTL and synthesis flows
= GDSII layout

m Licencees have the right to use hard or soft views of the IP
= soft views include gate level netlists
= hard views are DSMs

m OEMs must use hard views
= to protect ARM IP

39v10 The ARM Architecture 6

Introduction to ARM Ltd

m Programmers Model
Instruction Sets
System Design

Development Tools

39v10 The ARM Architecture 7

ARM® Data Sizes and Instruction Sets

m The ARM is a 32-bit architecture.

m When used in relation to the ARM:
m Byte means 8 bits
m Halfword means 16 bits (two bytes)
= Word means 32 bits (four bytes)

m Most ARM’s implement two instruction sets
m 32-bit ARM Instruction Set
m 16-bit Thumb Instruction Set

m Jazelle cores can also execute Java bytecode

39v10 The ARM Architecture 8

Processor Modes

m The ARM has seven basic operating modes:

m User : unprivileged mode under which most tasks run
= FIQ : entered when a high priority (fast) interrupt is raised
= |IRQ : entered when a low priority (normal) interrupt is raised

m Supervisor : entered on reset and when a Software Interrupt
instruction is executed

= Abort : used to handle memory access violations
= Undef : used to handle undefined instructions

m System : privileged mode using the same registers as user mode

39v10 The ARM Architecture 9

The ARM Register Set

Current Visible Registers

Abort Mode

Banked out Registers

User FIQ IRQ SvC Undef

rl3 (sp) rl3 (sp) f rl3 (sp) | r13 (sp)
rld (1lr) rl4 (1r) § rl4 (1lr) g rld (1lr)

cpsr

39v10 The ARM Architecture

10

ARM Register Organization Summary

Undef Abort

Thumb state
Low registers

Thumb state
High registers

cpsr
spsr spsr spsr

Note: System mode uses the User mode register set

39v10 The ARM Architecture 11

The Registers

m ARM has 37 registers all of which are 32-bits long.

1 dedicated program counter
1 dedicated current program status register
5 dedicated saved program status registers
30 general purpose registers

m The current processor mode governs which of several banks is
accessible. Each mode can access

a particular set of rO-r12 registers

a particular r13 (the stack pointer, sp) and r14 (the link register, Ir)
the program counter, r15 (pc)

the current program status register, cpsr

Privileged modes (except System) can also access

a particular spsr (saved program status register)

39v10 The ARM Architecture 12

31 28 27 24 23 16 15

IN.Z.C.VQ JI U n d e fIi

| - | - |

m Condition code flags
= N = Negative result from ALU
m Z = Zero result from ALU
m C =ALU operation Carried out
= V =ALU operation oVerflowed

m Sticky Overflow flag - Q flag
m Architecture 5TE/J only
= Indicates if saturation has occurred

m Jbit
m Architecture 5TEJ only
m J=1: Processor in Jazelle state

39v10 The ARM Architecture

Interrupt Disable bits.
m | =1: Disables the IRQ.
m F =1: Disables the FIQ.

T Bit
m Architecture xXT only
= T =0:Processorin ARM state
m T =1:Processorin Thumb state

Mode bits
m Specify the processor mode

Program Counter (rl15)

= When the processor is executing in ARM state:
m All instructions are 32 bits wide
= All instructions must be word aligned

m Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as
instruction cannot be halfword or byte aligned).

m When the processor is executing in Thumb state:
m All instructions are 16 bits wide
= All instructions must be halfword aligned

m Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as
instruction cannot be byte aligned).

m When the processor is executing in Jazelle state:
m All instructions are 8 bits wide
m Processor performs a word access to read 4 instructions at once

39v10 The ARM Architecture

Exception Handling

m When an exception occurs, the ARM:
m Copies CPSR into SPSR_<mode>
m Sets appropriate CPSR bits
= Change to ARM state
= Change to exception mode
= Disable interrupts (if appropriate)
m Stores the return address in LR_<mode>
m Sets PC to vector address

m To return, exception handler needs to:
m Restore CPSR from SPSR_<mode>
m Restore PC from LR_<mode>

This can only be done in ARM state.

39v10 The ARM Architecture

0x1C
0x18
Ox14
0x10
0x0C
0x08
0x04
0x00

FIQ
IRQ
(Reserved)
Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

Vector Table

Vector table can be at
OxFFFF0000 on ARM720T

and on ARM9/10 family devices

Development of the

ARM Architecture

: Improved : Jazell
: Halfword i ARM/Thum azetie
: and signed : Interworking : Java bytecode
i halfword / i execution
: byte support CLZ :
System SA-110 Saturated maths ARMOYEJ-S ARM926EJ-S
: - multiply-
SA-1110 i accumulate ARM7EJ-S ARM1026EJ-S
INSITUCHONS 1 e
Thumb ARM1020E SIMD Instructions
: instruction : i Multi-processing
Early ARM ;i set | XScale : V6 Memory

architectures

ARM7TDMI || ARMOTDMI |i | ARMOE-S ; architecture (VMSA)

: Unaligned data

ARM720T || ARM940T |i | ARM966E-S : support ARM1136EJ-S

i
I

39v10 The ARM Architecture 16

Introduction to ARM Ltd

Programmers Model
m Instruction Sets
System Design

Development Tools

39v10 The ARM Architecture

ARM conditional Execution and Flags

m ARMinstructions can be made to execute conditionally by postfixing
them with the appropriate condition code field.

m This improves code density and performance by reducing the number of
forward branch instructions.

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE rO,rl,r2
ADD rO,rl,r2

skip «—

m By default, data processing instructions do not affect the condition code

flags but the flags can be optionally set by using “S”. CMP does not

need “S”.
loop

cUBS r1 r1 #1 <«——1 decrementrl and set flags
BNE loop <<

if Z flag clear then branch

39v10 The ARM Architecture 18

Condition Codes

m The possible condition codes are listed below:
= Note AL is the default and does not need to be specified

39v10 The ARM Architecture

Suffix Description Flags tested
EQ Equal =1

NE Not equal Z=0

CS/HS | Unsigned higher or same C=1

CC/LO | Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

vC No overflow V=0

HI Unsigned higher C=1& Z=0
LS Unsigned lower or same C=0or Z=1
GE Greater or equal N=V

LT Less than NI=V

GT Greater than Z=0 & N=V
LE Less than or equal Z=1 or N=!V
AL Always

19

Examples of conditional

execution

m Use asequence of several conditional instructions
if (a==0) func(l);

CMP r0,#0
MOVEQ r0,#1
BLEQ func

m Set the flags, then use various condition codes
if (a==0) x=0;
if (a>0) =x=1;

CMP r0,#0
MOVEQ rl,#0
MOVGT rl,#1

m Use conditional compare instructions

if (a==4 || a==10) x=0;
CMP r0, #4
CMPNE r0,#10
MOVEQ rl, #0

20

39v10 The ARM Architecture

Branch instructions

m Branch:

m Branch with Link :

31 28 27

25 24 23

B{<cond>} label

BL{<cond>} subroutine label

0

T 1
Cond

1

0

1

L

T T T T 17T 17T T 7T 17T 17T 17T 17 17 T 17T 17T T 17T 11
Offset

I

L Link bit 0=Branch

1 = Branch with link

Condition field

m The processor core shifts the offset field left by 2 positions, sign-extends

It and adds it to the PC

= * 32 Mbyte range
= How to perform longer branches?

39v10 The ARM Architecture

21

Data processing Instructions

m Consist of ;

= Arithmetic: ADD ADC SUB SBC RSB RSC
m Logical: AND ORR EOR BIC

= Comparisons: CMP CMN TST TEQ

= Data movement: MOV MVN

m These instructions only work on registers, NOT memory.

m Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

m Comparisons set flags only - they do not specify Rd
= Data movement does not specify Rn

m Second operand is sent to the ALU via barrel shifter.

39v10 The ARM Architecture 22

The Barrel Shifter

LSL : Loaical Left Shift ASR: Arithmetic Right Shift
]
CF [< Destination <— o > [Destination > CF
Multiplication by a power of 2 Division by a power of 2,

preserving the sign bit

LSR : Loqgical Shift Right ROR: Rotate Right
...0 —>| Destination > CF —> | Destination > CF
Division by a power of 2 Bit rotate with wrap around

from LSB to MSB

RRX: Rotate Right Extended

Y

—>| Destination CF

Single bit rotate with wrap around
from CF to MSB

39v10 The ARM Architecture 23

Using the Barrel Shifter:

The Second Operand

Operand Operand < Register, optionally with shift operation
1 2 % = Shift value can be either be:
= 5 bit unsigned integer
= Specified in bottom byte of another

% register.
Barrel = Used for multiplication by constant
Shifter

Immediate value

= 8 bit number, with a range of 0-255.
= Rotated right through even number of
positions
m Allows increased range of 32-bit
constants to be loaded directly into
registers

ResuH

39v10 The ARM Architecture 24

Immediate constants (1)

m No ARM instruction can contain a 32 bit immediate constant
= All ARM instructions are fixed as 32 bits long

m The data processing instruction format has 12 bits available for operand?2

Quick Quiz:
Oxe3al004ff
MOV r0, #°°°

m 4 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

m Rule to remember is “8-bits shifted by an even number of bit positions”.

39v10 The ARM Architecture 25

Immediate constants (2)

m Examples:

31 0
ror #0 | [o]o[o[o]o]o]o]o]o]o]o]o[o]o]0]0]o]o0 o]0 o o] IR [range 0-0x000000i step 0x00000001

ror #8 _0 olo|jofololo|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O]|O range 0-0xff000000 step 0x01000000

ror #30| |o|o|o|o|o|o|o|o|o|o|o|o|ofo|o|o|o|olofo]|O o_o o| | range 0-0x000003fc step 0x00000004

m The assembler converts immediate values to the rotate form:
m MOV rO0,#4096 ; uses 0x40 ror 26
m ADD rl,r2,#0xFF0000 ; uses OxXFF ror 16

m The bitwise complements can also be formed using MVN:
m MOV r0O, #OxXFFFFFFFF ; assembles to MVN rO,#0

m Values that cannot be generated in this way will cause an error.

39v10 The ARM Architecture 26

Loading 32 bit constants

m To allow larger constants to be loaded, the assembler offers a pseudo-
Instruction:

m IDR rd, =const

m This will either:
= Produce a MOV or MVN instruction to generate the value (if possible).

or

= Generate a LDR instruction with a PC-relative address to read the constant
from a literal pool (Constant data area embedded in the code).

m For example
m IDR r0,=0xFF => MOV rO0,#0xFF
m ILDR r0,=0x55555555 => LDR rO, [PC, #Imml2]

m This is the recommended way of loading constants into a register

39v10 The ARM Architecture 27

Multiply

m Syntax:
m MUL{<cond>{S} Rd, Rm, Rs Rd=Rm*Rs
= MLA{<cond>{S} Rd,Rm,Rs,Rn Rd=(Rm *Rs) + Rn
s [U|SIMULL{<cond>{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs
m [U|SIMLAL{<cond>KS} RdLo, RdHi, Rm, Rs RdHi,RdLo := (Rm*Rs)+RdHi,RdLo

m Cycletime
= Basic MUL instruction
m 2-5 cycles on ARM7TDMI
m 1-3 cycles on StrongARM/XScale
m 2 cycles on ARM9E/ARM102xE
= +1 cycle for ARMOTDMI (over ARM7TDMI)
m +1 cycle for accumulate (not on 9E though result delay is one cycle longer)
m +1 cycle for “long”

m Above are “general rules” - refer to the TRM for the core you are using
for the exact details

39v10 The ARM Architecture 28

Single register data transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load
LDRSH Signed halfword load

m Memory system must support all access sizes

m Syntax:
s LDR{<cond>}<size>} Rd, <address>
m STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

39v10 The ARM Architecture 29

39v10 The ARM Architecture

Address accessed

Address accessed by LDR/STR is specified by a base register plus an
offset

For word and unsigned byte accesses, offset can be
= An unsigned 12-bit immediate value (ie O - 4095 bytes).
LDR rO0, [rl, #8]

m Aregister, optionally shifted by an immediate value
IDR 0, [rl,r2]
ILDR r0, [rl,r2,LSL#2]

This can be either added or subtracted from the base register:
LDR rO, [rl,#-8]
ILDR r0, [rl,-r2]
LDR r0, [rl,-r2,LSL#2]

For halfword and signed halfword / byte, offset can be:
= An unsigned 8 bit immediate value (ie 0-255 bytes).
m Aregister (unshifted).

Choice of pre-indexed or post-indexed addressing

30

ARM Pre or Post Indexed Addressing?

m Pre-indexed: STR r0, [rl,#12]
Offset Source

S 0x20c D — 0x5 Register
rl T
Base
Register IRUZAY * > 0x200

Auto-update form: STR rO0, [rl, #12]!

m Post-indexed: STR r0, [rl],#12
rl Offset

Updated
Base Ox20c === 12
Register - - Ox20c ro S
ource
Original r1 T / 0x5 I;\’egiss_lt_eRr
> 0x200 0x5 of

Base
Register HRAZAYY

31

39v10 The ARM Architecture

LDM / STM operation

m Syntax:
<LDM | STM>{<cond>}<addressing _mode> Rb{!}, <register list>

m 4 addressing modes:

LDMIA / STMIA increment after

LDMIB/ STMIB increment before

LDMDA / STMDA decrement after

LDMDB / STMDB decrement before
IA

IDMxx rl0, {rxO,rl,r4d}
STMxx rl0, {rO,rl,r4d}

Increasing
Address

Base Register (Rb)

39v10 The ARM Architecture

Software Interrupt (SWI)

31 28 27 24 23 0
T 17 1 T T T [T T T T T T T T T T T T T T T T T T 7 T T 11

Cond 1 111 SWI number (ignored by processor)

Condition Field

m Causes an exception trap to the SWI hardware vector

m The SWI handler can examine the SWI number to decide what operation
has been requested.

m By using the SWI mechanism, an operating system can implement a set
of privileged operations which applications running in user mode can
request.

m Syntax:
B SWI{<cond>} <SWI number>

39v10 The ARM Architecture 33

PSR Transfer Instructions

31 28 27 24 23 16 15 8 7 6 5 4 0
IIﬂZIChIQ JI U n d e ij. n e d IIIF T anFI I
| |

I f s b 4 I c I

m MRS and MSR allow contents of CPSR / SPSR to be transferred to / from
a general purpose register.

m Syntax:
® MRS{<cond>} Rd,<psr> ; Rd = <psr>
m MSR{<cond>} <psr[fields]>,Rm ; <psr[fields]> = Rm

where
m <psr> = CPSR or SPSR
m [fields] = any combination of ‘fsxc’

m Also an immediate form
m MSR{<cond>} <psr fields>,#Immediate

m In User Mode, all bits can be read but only the condition flags (_f) can be
written.

39v10 The ARM Architecture 34

ARM ARMBranches and Subroutines

m B <label>
s PC relative. £32 Mbyte range.

m BL <subroutine>
= Stores return address in LR
= Returning implemented by restoring the PC from LR
= For non-leaf functions, LR will have to be stacked

funcl func?2

STMFD
sp!, {regs,1r}

LDMFD
sp!, {regs,pc}

39v10 The ARM Architecture

m Thumb is a 16-bit instruction set
= Optimised for code density from C code (~65% of ARM code size)
= Improved performance from narrow memory
m Subset of the functionality of the ARM instruction set

m Core has additional execution state - Thumb
m Switch between ARM and Thumb using BX instruction

ADDS r2,r2,#1

32-bit ARM Instruction

For most instructions generated by compiler:
m Conditional execution is not used

m Source and destination registers identical

m Only Low registers used

m Constants are of limited size

= Inline barrel shifter not used

16-bit Thumb Instruction

39v10 The ARM Architecture 36

Introduction

Programmers Model
Instruction Sets
m System Design

Development Tools

39v10 The ARM Architecture

37

ARM Example ARM-based System

16 bit RAM

32 bit RAM

Interrupt

Controller

8 bit ROM

Peripherals

39v10 The ARM Architecture

1/O

38

ARM

TIC

External Bus Interface
ROM External

| Bus
Interface

External

RAM Interrupt
Controller

- AHB or ASB S APB S
System Bus Peripheral Bus
m AMBA m ACT
= Advanced Microcontroller Bus = AMBA Compliance Testbench
Architecture
s ADK m PrimeCell

= Complete AMBA Design Kit = ARM’s AMBA compliant peripherals

39v10 The ARM Architecture 39

Introduction

Programmers Model
Instruction Sets
System Design

m Development Tools

39v10 The ARM Architecture

40

ARM The RealView Product Families

Compilation Tools Debug Tools Platforms
ARM Developer Suite (ADS) — AXD (part of ADS) ARMulator (part of ADS)
Compilers (C/C++ARM & Thumb), Trace Debug Tools Integrator™ Family

Linker & Utilities)
Multi-ICE

Multi-Trace

RealView Compilation Tools (RVCT) RealView Debugger (RVD) RealView ARMulator ISS (RVISS)
RealView ICE (RVI)
RealView Trace (RVT)

39v10 The ARM Architecture

ARM Debug Architecture

Ethernet

Debugger (+ optional
trace tools)

JTAG t Trace Port
m EmbeddedICE Logic bor

m Provides breakpoints and processor/system

access
TAP
m JTAG interface (ICE) controller
= Converts debugger commands to JTAG I
signals

EmbeddedICE
m Embedded trace Macrocell (ETM) Logic

m Compresses real-time instruction and data
access trace

= Contains ICE features (trigger & filter logic)

m Trace port analyzer (TPA)
m Captures trace in a deep buffer

39v10 The ARM Architecture

IR E AR SR H MR R G W AREE

FOR e [SS IS Y | WS R LR

	Slide 1: The ARM Architecture
	Slide 2: Agenda
	Slide 3: ARM Ltd
	Slide 4: ARM Partnership Model
	Slide 5: ARM Powered Products
	Slide 6
	Slide 7: Agenda
	Slide 8: Data Sizes and Instruction Sets
	Slide 9: Processor Modes
	Slide 10: The ARM Register Set
	Slide 11: Register Organization Summary
	Slide 12: The Registers
	Slide 13: Program Status Registers
	Slide 14: Program Counter (r15)
	Slide 15: Exception Handling
	Slide 16: Development of the ARM Architecture
	Slide 17: Agenda
	Slide 18: Conditional Execution and Flags
	Slide 19: Condition Codes
	Slide 20: Examples of conditional execution
	Slide 21: Branch instructions
	Slide 22: Data processing Instructions
	Slide 23: The Barrel Shifter
	Slide 24: Using the Barrel Shifter: The Second Operand
	Slide 25: Immediate constants (1)
	Slide 26: Immediate constants (2)
	Slide 27: Loading 32 bit constants
	Slide 28: Multiply
	Slide 29: Single register data transfer
	Slide 30: Address accessed
	Slide 31: Pre or Post Indexed Addressing?
	Slide 32: LDM / STM operation
	Slide 33: Software Interrupt (SWI)
	Slide 34: PSR Transfer Instructions
	Slide 35: ARM Branches and Subroutines
	Slide 36: Thumb
	Slide 37: Agenda
	Slide 38: Example ARM-based System
	Slide 39: AMBA
	Slide 40: Agenda
	Slide 41: The RealView Product Families
	Slide 42: ARM Debug Architecture
	Slide 43

