' %! N, Politecnico
4 B »Y di Torino
By

W 1859 ," Department of Control and
-\ 1 5
- e Computer Engineering

-

&
2

SMILIeS

re ilientco puter arch tectures
and f ciences

MAKEFILES

SmiLies

SEPARATE COMPILATION

Large programs are generally separated into multiple files, e.g., main.c addmoney.c
removemoney.Cc money.h

With several files, we can compile and link our program as usual using

gcc addmoney.Cc removemoney.C maln.c
When compiling in this manner produces a problem, we fix the problem and recompile.

But, we ended up recompiling everything with
gcc addmoney.c removemoney.C maln.c

even if we had to make a very simple change to just one file.

This is wasteful.

10/7/2024 Makefiles

SEPARATE COMPILATION

10/7/2024

What we should do instead is separately compile source files to intermediate object files and then
link them together

So, for the files
addmoney.c
removemoney.c
main.c
We want to compile each piece separately and then link them together.

When we just compile source code (without linking it together), it means that we take the .c files and
generate intermediate object (.0) files.

Makefiles

SEPARATE COMPILATION es

» To just compile source code, use the -c flag with the compiler...
gcc —c addmoney.c
gcc —C removemoney.c
gcc —-c main.c

» This will generate the object files addmoney .o, removemoney.o,andmain.o

» Finally, to link the object files (.0) into an executable that we can run, we use the compiler again
(although this time it will just pass the .o files on to the linking stage):

gcc -0 money addmoney.o removemoney.o main.o

10/7/2024 Makefiles

MAKE UTI LITY K sr;m.les

The Unix make program is a handy utility that can be used to build things ranging from programs to
documents.

Helps you to build and manage projects

Types of statements that can go in a makefile

macro definition — name that you define to represent a variable that may occur several times within the
makefile

target definition — lists the target file, its required files, and commands to execute the required files in order
to produce the target.

Suffix rules — indicate the relationship between target and source file suffixes (filename extensions).

Suffix declarations — lists of suffixes (file extensions) used in suffix rules

10/7/2024 Makefiles

MAKE UTI LITY L sr;m.les

target definition
target: dependencies

[tab] commands

targets — labels that appear in column 1 and are followed by the ":" character.

dependencies - a list of files following the name of the target. These are the files that are needed to

make the target. The target "depends on these files." If any dependency is newer than the target, the
target will be rebuilt.

commands — specify the procedure for building the target. Each line must begin with the tab
character, not spaces.

10/7/2024 Makefiles

MAKE UTILITY

10/7/2024

For a project consisting of the filesmain.c , removemoney.c , addmoney
money . h, the trivial way to compile the files and obtain an executable is

gcc -0 money main.c removemoney.c addmoney.c
A makefile for doing this would look like:
money: main.o removemoney.o addmoney.o
cc -0 money main.c removemoney.c addmoney.c
In this example,
» target is money.
» The dependencies are main.o, removemoney.o, and addmoney.o

For make to execute correctly, it must meet all the dependencies of money. If main

SmiLies

.C and

.0,

removemoney .o, or addmoney . o is newer than money, then make rebuilds money

Makefiles

SmiLies

MAKE UTILITY - RUNNING MAKE ON THE COMMAND LINE

There are different ways to run make.
make
Looks in the current directory for a file named makefile or Makefile and runs the commands for the first target
make —f <filename>

Looks in the current directory for a makefile with the given name and runs the commands of the first target.

make <target>

Looks for a file named makefile or Makefile and locates the target. This does not have to be the first target. It will run
the commands for that target provided the dependencies are more recent than the target.

10/7/2024 Makefiles

SmiLies

MAKE UTILITY

» Example
money: maln.o removemoney.o addmoney.o
cCc -0 money main.c addmoney.Cc removemoney.c
» To build money, type either of the following commands:
ma ke

» Or

make money

10/7/2024 Makefiles

SmiLies

MAKE UTILITY

» Example
money: malin.o addmoney.o removemoney.o
cCc -0 money main.c addmoney.Cc removemoney.c
clean:
rm *.o0 *.err
» In this example, there are two targets: money and clean
» The second target has no dependencies.

» The command make clean will remove all object files and all .err files.

10/7/2024 Makefiles

MACROS

SmiLies

You want to use macros to make it easy to make changes.

For example, if you use macros, it's easy to change the compiler and compiler options different compilers.
It's easy to turn on and off debug options.

Without macros, you would use a lot of search and replace.

You use macros in makefiles for the same reason you define constants in programs. It's easier to
update the files and make it more flexible.

10/7/2024 Makefiles

MACROS

SmiLies

» Predefined macro-based names:
» S@ — the current target’s full name
» $7? — alist of the target’s changed dependencies
» S$< — similar to $? But identifies a single file dependency and is used only in suffix rules

» S$* — the target file’s name without a suffix

» Another useful macro-based facility permits one to change prefixes on the fly. The macro

» S (@:.o0=.err)says use the target name but change the .o to .err.

10/7/2024 Makefiles

MACRO DEFINITION i es

» A makefile line with the following syntax

MACRO-NAME = macro value.

» Invoked using the syntax

$ (MACRO-NAME)

» Result is that S(MACRO-NAME) is replaced by the current value of the macro.

» Examples

OBJS = malin.o removemoney.o addmoney.o
CC = gcc
CFLAGS = -DDBG PIX -DDBG HIT

10/7/2024 Makefiles

VARIABLES

SmiLies

» The old way (no variables) » A new way (using variables)
. C = gcc
my prog : eval.o main.o
o OBJS = eval.o main.o

— rog eval.o main.o
gcc -0 my prog ev - HDRS = eval.h

eval.o : eval.c eval.h
gcc -c¢ —g eval.c my prog : eval.o main.o
main.o : main.c eval.h $(C) -o my prog $(0OBJS)

gec -¢ —g main.c eval.o : eval.c

S(C) -c —g eval.c

mailn.o : main.c
Defining variables on the command line: 5(C) -c -g main.c
Take precedence over variables defined in the makefile. $(OBJS) : S (HDRS)

make C=cc

10/7/2024 Makefiles

SmiLies

MAKE OPTIONS

» make options:

» -f filename - when the makefile name is not standard

-t - (touch) mark the targets as up to date
-q - (question) are the targets up to date, exits with 0 if true

-n - print the commands to execute but do not execute them

vV v v Vv

/ -t, -q, and -n, cannot be used together /

-s - silent mode

-k - keep going — compile all the prerequisites even if not able to link them !!

10/7/2024 Makefiles

VPATH

SmiLies

» VPATH variable — defines directories to be searched if a file is not found in the current directory.
» VPATH =dir : dir ...
» /VPATH = src:../headers/

» vpath directive (lower case!) — more selective directory search:
» vpath pattern directory
» /vpath %.h headers /

» GPATH:

» GPATH - if you want targets to be stored in the same directory as their dependencies.

10/7/2024 Makefiles

IMPLICIT RULES es

Implicit rules are standard ways for making one type of file from another type.

» There are numerous rules for making an .o file — from a .c file, a .p file, etc. make applies the first rule

it meets.

» If you have not defined a rule for a given object file, make will apply an implicit rule for it.

» Example:
Our makefile The way make understands it
my prog : eval.o main.o my prog : eval.o main.o
N $(C) -o my prog $(OBJS)
5(C) -o my_prog 5 (OBJS) $(OBJS) : $ (HEADERS)
$ (OBJS) : $ (HEADERS) eval.o : eval.c
$(C) -c eval.c
main.o : main.c

10/7/2024

S(C) —-c main.c

Makefiles

EXAMPLE OF A MAKEFILE

SmiLies

CC = gcc

DIR = /home/faculty/crahn/public html/cop4833/1ib
CFLAGS = -g -IS$(DIR) -I. -c

LFLAGS = -g

opt: analysis.o flow.o 10.0 misc.o opt.o opts.o peephole.o regs.o vect.o

$(CC) $(LFLAGS) -o opt analysis.o flow.o i0.0 misc.o opt.o opts.o peephole.o
regs.o vect.o

analysis.o: analysis.c analysis.h $(DIR)/misc.h $(DIR)/opt.h $(DIR)/vect.h
$(CC) S$(CFLAGS) analysis.c

flow.o: $(DIR)/flow.c $(DIR)/flow.h $(DIR)/opt.h
S(CC) S (CFLAGS) S(DIR)/flow.c

io.o: $(DIR)/io.c $(DIR)/io.h analysis.h $(DIR)/misc.h $(DIR)/opt.h peephole.h
$ (DIR) /regs.h

S (CC) $(CFLAGS) $(DIR)/io.c

10/7/2024 Makefiles

READINGS

» These slides were created by copying (sometimes verbatim!) material from the manual
http://www.gnu.org/software/make/manual/make.html .

» Read this manual for more information (just reading Chapter 2 will suffice).

10/7/2024 Makefiles

Department of Control and
Computer Engineering

SMiLIesS
re ilientco puter arch tectures QUESTIONS?

and ' f- “ciences

THANKYOU!

	Slide 1: MAKEFILES
	Slide 2: Separate compilation
	Slide 3: Separate compilation
	Slide 4: Separate compilation
	Slide 5: make Utility
	Slide 6: make Utility
	Slide 7: make Utility
	Slide 8: make Utility - Running make on the command line
	Slide 9: Make Utility
	Slide 10: Make Utility
	Slide 11: Macros
	Slide 12: Macros
	Slide 13: Macro definition
	Slide 14: VARIABLES
	Slide 15: make options
	Slide 16: VPATH
	Slide 17: IMPLICIT RULES
	Slide 18: Example of a makefile
	Slide 19: READINGS
	Slide 20

