
MAKEFILES
STEFANO DI CARLO

SEPARATE COMPILATION

 Large programs are generally separated into multiple files, e.g., main.c addmoney.c

removemoney.c money.h

 With several files, we can compile and link our program as usual using

gcc addmoney.c removemoney.c main.c

 When compiling in this manner produces a problem, we fix the problem and recompile.

 But, we ended up recompiling everything with

 gcc addmoney.c removemoney.c main.c

 even if we had to make a very simple change to just one file.

 This is wasteful.

10/7/2024 Makefiles 2

SEPARATE COMPILATION

 What we should do instead is separately compile source files to intermediate object files and then
link them together

 So, for the files

 addmoney.c

 removemoney.c

 main.c

We want to compile each piece separately and then link them together.

 When we just compile source code (without linking it together), it means that we take the .c files and
generate intermediate object (.o) files.

10/7/2024 Makefiles 3

SEPARATE COMPILATION

 To just compile source code, use the -c flag with the compiler...

gcc -c addmoney.c

gcc -c removemoney.c

gcc -c main.c

 This will generate the object files addmoney.o, removemoney.o, and main.o

 Finally, to link the object files (.o) into an executable that we can run, we use the compiler again
(although this time it will just pass the .o files on to the linking stage):

gcc -o money addmoney.o removemoney.o main.o

10/7/2024 Makefiles 4

MAKE UTILITY

 The Unix make program is a handy utility that can be used to build things ranging from programs to
documents.

 Helps you to build and manage projects

 Types of statements that can go in a makefile

 macro definition – name that you define to represent a variable that may occur several times within the
makefile

 target definition – lists the target file, its required files, and commands to execute the required files in order
to produce the target.

 Suffix rules – indicate the relationship between target and source file suffixes (filename extensions).

 Suffix declarations – lists of suffixes (file extensions) used in suffix rules

10/7/2024 Makefiles 5

MAKE UTILITY

 target definition

 target: dependencies

 [tab] commands

 targets – labels that appear in column 1 and are followed by the ":" character.

 dependencies - a list of files following the name of the target. These are the files that are needed to
make the target. The target "depends on these files." If any dependency is newer than the target, the
target will be rebuilt.

 commands – specify the procedure for building the target. Each line must begin with the tab
character, not spaces.

10/7/2024 Makefiles 6

MAKE UTILITY

 For a project consisting of the files main.c , removemoney.c , addmoney.c and
money.h, the trivial way to compile the files and obtain an executable is

gcc -o money main.c removemoney.c addmoney.c

 A makefile for doing this would look like:

money: main.o removemoney.o addmoney.o

 cc -o money main.c removemoney.c addmoney.c

 In this example,

 target is money.

 The dependencies are main.o, removemoney.o, and addmoney.o

 For make to execute correctly, it must meet all the dependencies of money. If main.o,
removemoney.o, or addmoney.o is newer than money, then make rebuilds money

10/7/2024 Makefiles 7

MAKE UTILITY - RUNNING MAKE ON THE COMMAND LINE

 There are different ways to run make.

make

 Looks in the current directory for a file named makefile or Makefile and runs the commands for the first target

make –f <filename>

 Looks in the current directory for a makefile with the given name and runs the commands of the first target.

make <target>

 Looks for a file named makefile or Makefile and locates the target. This does not have to be the first target. It will run
the commands for that target provided the dependencies are more recent than the target.

10/7/2024 Makefiles 8

MAKE UTILITY

 Example

money: main.o removemoney.o addmoney.o

 cc -o money main.c addmoney.c removemoney.c

 To build money, type either of the following commands:

make

 Or

make money

10/7/2024 Makefiles 9

MAKE UTILITY

 Example

money: main.o addmoney.o removemoney.o

 cc -o money main.c addmoney.c removemoney.c

clean:

 rm *.o *.err

 In this example, there are two targets: money and clean

 The second target has no dependencies.

 The command make clean will remove all object files and all .err files.

10/7/2024 Makefiles 10

MACROS

 You want to use macros to make it easy to make changes.

 For example, if you use macros, it's easy to change the compiler and compiler options different compilers.
It's easy to turn on and off debug options.

 Without macros, you would use a lot of search and replace.

 You use macros in makefiles for the same reason you define constants in programs. It's easier to
update the files and make it more flexible.

10/7/2024 Makefiles 11

MACROS

 Predefined macro-based names:

 $@ — the current target’s full name

 $? — a list of the target’s changed dependencies

 $< — similar to $? But identifies a single file dependency and is used only in suffix rules

 $* — the target file’s name without a suffix

 Another useful macro-based facility permits one to change prefixes on the fly. The macro

 $(@:.o=.err) says use the target name but change the .o to .err.

10/7/2024 Makefiles 12

MACRO DEFINITION

 A makefile line with the following syntax

MACRO-NAME = macro value.

 Invoked using the syntax

$(MACRO-NAME)

 Result is that $(MACRO-NAME) is replaced by the current value of the macro.

 Examples

OBJS = main.o removemoney.o addmoney.o

CC = gcc

CFLAGS = -DDBG_PIX -DDBG_HIT

10/7/2024 Makefiles 13

VARIABLES

 The old way (no variables)

my_prog : eval.o main.o

gcc -o my_prog eval.o main.o

 eval.o : eval.c eval.h

gcc -c –g eval.c

main.o : main.c eval.h

gcc -c –g main.c

Defining variables on the command line:

Take precedence over variables defined in the makefile.

make C=cc

 A new way (using variables)

C = gcc

OBJS = eval.o main.o

HDRS = eval.h

my_prog : eval.o main.o

 $(C) -o my_prog $(OBJS)

eval.o : eval.c

 $(C) –c –g eval.c

main.o : main.c

 $(C) –c –g main.c

$(OBJS) : $(HDRS)

10/7/2024 14Makefiles

MAKE OPTIONS

 make options:

 -f filename - when the makefile name is not standard

 -t - (touch) mark the targets as up to date

 -q - (question) are the targets up to date, exits with 0 if true

 -n - print the commands to execute but do not execute them

 / -t, -q, and -n, cannot be used together /

 -s - silent mode

 -k - keep going – compile all the prerequisites even if not able to link them !!

10/7/2024 15Makefiles

VPATH

 VPATH variable – defines directories to be searched if a file is not found in the current directory.

 VPATH = dir : dir …

 / VPATH = src:../headers /

 vpath directive (lower case!) – more selective directory search:

 vpath pattern directory

 / vpath %.h headers /

 GPATH:

 GPATH – if you want targets to be stored in the same directory as their dependencies.

10/7/2024 16Makefiles

IMPLICIT RULES

 Implicit rules are standard ways for making one type of file from another type.

 There are numerous rules for making an .o file – from a .c file, a .p file, etc. make applies the first rule
it meets.

 If you have not defined a rule for a given object file, make will apply an implicit rule for it.

 Example:

10/7/2024 17Makefiles

Our makefile

my_prog : eval.o main.o

 $(C) -o my_prog $(OBJS)

$(OBJS) : $(HEADERS)

The way make understands it
my_prog : eval.o main.o

 $(C) -o my_prog $(OBJS)

$(OBJS) : $(HEADERS)

eval.o : eval.c

 $(C) -c eval.c

main.o : main.c

 $(C) -c main.c

EXAMPLE OF A MAKEFILE

CC = gcc

DIR = /home/faculty/crahn/public_html/cop4833/lib

CFLAGS = -g -I$(DIR) -I. -c

LFLAGS = -g

opt: analysis.o flow.o io.o misc.o opt.o opts.o peephole.o regs.o vect.o

 $(CC) $(LFLAGS) -o opt analysis.o flow.o io.o misc.o opt.o opts.o peephole.o
regs.o vect.o

analysis.o: analysis.c analysis.h $(DIR)/misc.h $(DIR)/opt.h $(DIR)/vect.h

 $(CC) $(CFLAGS) analysis.c

flow.o: $(DIR)/flow.c $(DIR)/flow.h $(DIR)/opt.h

 $(CC) $(CFLAGS) $(DIR)/flow.c

io.o: $(DIR)/io.c $(DIR)/io.h analysis.h $(DIR)/misc.h $(DIR)/opt.h peephole.h
$(DIR)/regs.h

 $(CC) $(CFLAGS) $(DIR)/io.c

10/7/2024 Makefiles 18

READINGS

 These slides were created by copying (sometimes verbatim!) material from the manual
http://www.gnu.org/software/make/manual/make.html .

 Read this manual for more information (just reading Chapter 2 will suffice).

10/7/2024 19Makefiles

THANK YOU!

QUESTIONS?

	Slide 1: MAKEFILES
	Slide 2: Separate compilation
	Slide 3: Separate compilation
	Slide 4: Separate compilation
	Slide 5: make Utility
	Slide 6: make Utility
	Slide 7: make Utility
	Slide 8: make Utility - Running make on the command line
	Slide 9: Make Utility
	Slide 10: Make Utility
	Slide 11: Macros
	Slide 12: Macros
	Slide 13: Macro definition
	Slide 14: VARIABLES
	Slide 15: make options
	Slide 16: VPATH
	Slide 17: IMPLICIT RULES
	Slide 18: Example of a makefile
	Slide 19: READINGS
	Slide 20

