
SCHEDULING PERIODIC TASKS
STEFANO DI CARLO

SCHEDULING OF PERIODIC TASKS

 The following algorithms are considered:

 Timeline scheduling

 Rate Monotonic (RM) scheduling

 Earliest Deadline First (EDF) scheduling

2
10/19/2024 Scheduling Periodic Tasks

TIMELINE SCHEDULING

 Certain application does not require complex operating systems

 Independent tasks executed in sequential fashion

 No need for IPC, neither synchronization

 Tasks cannot be interrupted → no preemption

 Example: tasks manage acquisition of data using one shared resource (e.g., ADC)

3

Task #1 Task #2 Task #3

Infinite loop

Task #4Task #1 Task #2 Task #3

Infinite loop

Task #4

10/19/2024 Scheduling Periodic Tasks

TIMELINE SCHEDULING

 The temporal axis is divided into slots of equal length called minor cycles

 One or more tasks can be allocated for execution into minor cycles, in such a way to respect the
frequencies derived from the application requirements

 A timer synchronizes the activation of the tasks at the beginning of each time slot

 A sequence of minor cycle repeated identically is called major cycle

4

Minor cycle

Major cycle

10/19/2024 Scheduling Periodic Tasks

TIMELINE SCHEDULING

 Minor cycle

 It is the greatest common divider of all the task
periods

 Major cycle

 It is the least common multiplier of all the task
periods

 The scheduling is feasible if the sum of the WCET for
the tasks in the minor cycle is at most equal to the
minor cycle

 Example

 Three tasks (A, B, C):

 TA = 25 ms (every 25 ms it must run)

 TB = 50 ms (every 50 ms it must run)

 TC = 100 ms (every 100 ms it must run

5
10/19/2024 Scheduling Periodic Tasks

TIMELINE SCHEDULING

 The implementation can be done very easily

 Each task is coded as a function

 Each minor cycle is implemented as a function that
call each task allotted in the minor cycle

 The major cycle is a endless loop that call each minor
cycle function

 The execution of the minor cycle function call is
regulated by an interrupt timer programmed with the
minor cycle duration

6

A AB C B

Minor_1() Major()

{ {

 A(); while(1)

} {

 Minor_1();

Minor_2() wait_timer();

{ Minor_2();

 B(); wait_timer();

} Minor_1();

 wait_timer();

 Minor_3();

 wait_timer();

Minor_3() }

{ }

 C();

 B();

}

10/19/2024 Scheduling Periodic Tasks

EXERCISE

 Given the following task set compute a feasible
scheduling (if any) using time-line scheduling when

 x = 1

 x = 2

 Compute the maximum value for x that makes the
timeline scheduling feasible

7
10/19/2024 Scheduling Periodic Tasks

EXERCISE

10/19/2024 8Scheduling Periodic Tasks

NON-HARMONIC PERIODS

 If the MCD is 1, it means the task periods are non-harmonic, meaning they don't share a common divisor
greater than 1.

 There are no simple, repeatable intervals where tasks will naturally align.

 Task executions are less likely to overlap or synchronize over time.

 If the MCD is 1, the LCM could be quite large, requiring a longer major cycle to represent a complete,
repeating schedule

 Impacts on Timing and Efficiency:

 Complexity: A larger LCM increases the complexity of the schedule because the timeline needs to accommodate
various tasks that might only synchronize after a long period.

 Increased Context Switching: Tasks with very different periods will require more frequent context switches,
possibly leading to overhead in the system.

 Potential for Gaps in the Schedule: When tasks are non-harmonic and their MCD is 1, there might be periods
where no tasks are executing, or some tasks may need to be scheduled more frequently to meet their deadlines,
increasing the complexity of managing idle time.

10/19/2024 9Scheduling Periodic Tasks

RATE MONOTONIC SCHEDULING

 Fixed priority scheduling

 Each process has a fixed, static priority computed offline, before run-time

 The ready processes are scheduled according to their priority

 Hypothesis

 Basic process model (deadline=period)

 Tasks have static priority

 Scheduler is preemptive

 One processor

 Scheduling algorithm

 Each task is assigned a fixed priority that is inversely proportional to its period: the shorter the period, the
higher the priority

10
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

11
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

12
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

13
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

14
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

15
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

16
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

17
10/19/2024 Scheduling Periodic Tasks

EXAMPLE

18
10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RM

 The relative deadline of a task is equal to its period: Di = Ti ∀ i

 The absolute deadline is the time of its next release: di,j = ri,j+1

 There is an overflow at time t if t is the deadline of a job that misses the deadline

 A scheduling is feasible for a given set of task if they are scheduled so that no overflows ever occur

19
10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RM

 Let us consider two tasks, 1 and 2, with T1 < T2

 If their priorities are not assigned according to RM, then 2 will have a priority higher than 1

 At a critical instant (r1=r2=0), their situation is

 The scheduling is feasible iff: C1+C2 < T1

20
10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RMS

 If priorities are assigned according to RM, 1 will have a priority higher than 2

 Let F be the number of periods of 1 entirely contained in 2

 Two cases must be considered:

 Execution time C1 is “short enough” so that all the instances of 1 are completed before the next release of
2

 Execution of the last instance of 1 overlaps the next release of 2

21

F =
T2

T1

ê

ë
ê

ú

û
ú

10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RM

 First case is feasible iff (F +1)C1 + C2≤T2

22

preemption

10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RM

 Second case is feasible iff FC1 + C2≤FT1

23

preemption

10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RM

 Given a set of two tasks 1 and 2 with T1 < T2

 If priorities are assigned according to RM, the scheduling is feasible iff:

 (F +1)C1+C2 ≤T2, when C1<T2−FT1

 FC1 +C2≤FT1, when C1≥T2−FT1

 If priorities are assigned otherwise, the set is schedulable iff C1 + C2 ≤ T1

24
10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RM — SUFFICIENT CONDITION

 General criteria: let Γ = {1,..., n} be a set of n periodic tasks, where each task i is characterized by a
processor utilization Ui

 Γ is schedulable with the RM if

25

Periodic Task Scheduling 97

and since (by the Hospital’s rule)

lim
y→0

y

ln(y + 1)
= lim

y→0

1

1/ (y + 1)
= lim

y→0
(y + 1) = 1,

we have that

lim
n→∞

Ul ub(n) = ln 2.

4.3.4 HYPERBOLIC BOUND FOR RM

The feasibility analysis of the RM algorithm can also be performed using a different

approach, called the Hyperbolic Bound [BBB01, BBB03]. The test has the same

complexity as the original Liu and Layland bound but it is less pessimistic, as it accepts

task sets that would be rejected using the original approach. Instead of minimizing

the processor utilization with respect to task periods, the feasibility condition can be

manipulated in order to find a tighter sufficient schedulability test as a function of the

individual task utilizations.

The following theorem provides a sufficient condition for testing the schedulability of

a task set under the RM algorithm.

Theorem 4.1 Let Γ = { τ1, . . . , τn } be a set of n periodic tasks, where each task τ i

is characterized by a processor utilization Ui . Then, Γ is schedulable with the RM

algorithm if
n

i = 1

(Ui + 1) ≤ 2. (4.10)

Proof. Without loss of generality, we may assume that tasks are ordered by increasing

periods, so that τ1 is the task with the highest priority and τ n is the task with the

lowest priority. In [LL73], as well as in [DG00], it has been shown that the worst-case

scenario for a set on n periodic tasks occurs when all the tasks start simultaneously

(e.g., at time t = 0) and periods are such that

∀i = 2, . . . , n T1 < Ti < 2T1.

Moreover, the total utilization factor is minimized when computation times have the

following relations: ⎧
⎪⎪⎨

⎪⎪⎩

C1 = T2 − T1

C2 = T3 − T2

· · ·

Cn− 1 = Tn − Tn− 1

(4.11)

10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF RM —NECESSARY CONDITION

10/19/2024 26Scheduling Periodic Tasks

EXERCISE

 Given the following task set compute a feasible scheduling if any using RMS when x = 2

 Compute the maximum value for x that makes the RMS scheduling feasible

27
10/19/2024 Scheduling Periodic Tasks

EARLIEST DEADLINE FIRST SCHEDULING

 Dynamic priority scheduler

 The ready tasks are executed in the order determined by their priority, which is computed at run-time

 The priority assignment is dynamic, the same task may have different priorities at different time

 Hypothesis

 Basic process model (deadline=period)

 Tasks have dynamic priority

 Scheduler is preemptive

 One processor

 Scheduling algorithm

 The EDF algorithm selects tasks according to their absolute deadlines. At each instant, the task with earliest
deadline will receive highest priority

28
10/19/2024 Scheduling Periodic Tasks

FEASIBILITY OF EDF

 Schedulability of periodic task set handled by EDF can be verified through the processor utilization
factor

 A set of periodic tasks is schedulable with EDF if and only if

29

100 Chapt er 4

4.4 EARLIEST DEADLINE FIRST

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that selects

tasks according to their absolute deadlines. Specifically, tasks with earlier deadlines

will be executed at higher priorities. Since the absolute deadline of a periodic task

depends on the current j th instance as

di ,j = Φi + (j − 1)Ti + D i ,

EDF is a dynamic priority assignment. Moreover, it is typically executed in preemp-

tive mode, thus the currently executing task is preempted whenever another periodic

instance with earlier deadline becomes active.

Note that EDF does not make any specific assumption on the periodicity of the tasks;

hence, it can be used for scheduling periodic as well as aperiodic tasks. For the same

reason, the optimality of EDF, proved in Chapter 3 for aperiodic tasks, also holds for

periodic tasks.

4.4.1 SCHEDULABILITY ANALYSIS

Under the assumptions A1, A2, A3, and A4, the schedulability of a periodic task set

handled by EDF can be verified through the processor utilization factor. In this case,

however, the least upper bound is one; therefore, tasks may utilize the processor up

to 100% and still be schedulable. In particular, the following theorem holds [LL73,

SBS95]:

Theorem 4.2 A set of periodic tasks is schedulable with EDF if and only if

n

i = 1

Ci

Ti

≤ 1.

Proof. Only if. We show that a task set cannot be scheduled if U > 1. In fact, by

defining T = T1T2 . . . Tn , the total demand of computation time requested by all tasks

in T can be calculated as
n

i = 1

T

Ti

Ci = UT.

If U > 1, that is, if the total demand UT exceeds the available processor time T , there

is clearly no feasible schedule for the task set.

10/19/2024 Scheduling Periodic Tasks

RM VS EDF

 RM is easier to implement than EDF, as priority is static

 EDF requires a more complex run-time system

 During overload situations, RM is easier to predict (lower-priority processes will miss deadlines first)

 EDF is less predictable, and can experience a domino effect in which a large number of tasks
unnecessarily miss their deadline

 EDF is always able to exploit the full processor capacity, whereas RM in the worst case does not

30
10/19/2024 Scheduling Periodic Tasks

RM VS EDF

 C1=2, T1=5, C2=4, T2=7

31

31

Univ. Paderborn

Heinz Nixdorf Institut

F.J. Rammig

61/118SBCCI‘01

EDF Schedulability Analysis

• Schedulability of periodic task set handled by EDF can be verified

through the processor utilization factor

• Ulub here is 1 , i.e. 100 % utilization achievable

Theorem

A set of periodic tasks is schedulable with EDF if and only if

1
1

£å
=

n

i i

i

T

c

.

Univ. Paderborn

Heinz Nixdorf Institut

F.J. Rammig

62/118SBCCI‘01

EDF Schedulability Analysis : Example

U = 2/5 + 4/7 = 34/35 = 0.97 > ln 2 => not schedulable by RM

.

U = 2/5 + 4/7 = 34/35 = 0.97 > ln 2 => not schedulable by RM

0 5 10 15 20 25 30 35

28211470

0 5 10 15 20 25 30 35

28211470

RM

EDF

time overflow

t1

t1

t2

t2

(Source: [Bu])

10/19/2024 Scheduling Periodic Tasks

EXERCISE

 Given the following task set compute a feasible scheduling if any using the EDF algorithm

32
10/19/2024 Scheduling Periodic Tasks

10/19/2024 33Scheduling Periodic Tasks

10/19/2024 34Scheduling Periodic Tasks

THANK YOU!

QUESTIONS?

	Slide 1: SCHEDULING PERIODIC TASKS
	Slide 2: Scheduling of periodic tasks
	Slide 3: Timeline scheduling
	Slide 4: Timeline scheduling
	Slide 5: Timeline scheduling
	Slide 6: Timeline scheduling
	Slide 7: Exercise
	Slide 8: EXERCISE
	Slide 9: Non-harmonic Periods
	Slide 10: Rate Monotonic scheduling
	Slide 11: Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Example
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: Feasibility of RM
	Slide 20: Feasibility of RM
	Slide 21: Feasibility of RMS
	Slide 22: Feasibility of RM
	Slide 23: Feasibility of RM
	Slide 24: Feasibility of RM
	Slide 25: Feasibility of RM — SUFFICIENT condition
	Slide 26: Feasibility of RM —necessary condition
	Slide 27: Exercise
	Slide 28: Earliest Deadline First scheduling
	Slide 29: Feasibility of EDF
	Slide 30: RM vs EDF
	Slide 31: RM vs EDF
	Slide 32: Exercise
	Slide 33
	Slide 34
	Slide 35

