
INTRODUCTION TO OPERATING 

SYSTEMS
STEFANO DI CARLO



OPERATING SYSTEM DEFINITION

 An Operating System (OS) is a System Software that 
manages computer hardware and software 
resources and provides services to users programs.

 It acts as an intermediary between users and the 
hardware of a computer.

10/12/2024 2Introduction to Operating Systems

Hardware Platform

Hardware Specific Services

Mass Storage 
Manager

Device Manager

CPU Manager MEMORY Manager

System-Call Interface

Applications



A VIEW OF OPERATING SYSTEM SERVICES

User and other system programs

User Interfaces

GUI Command Line Touch Screen

System calls

Program 
Execution

I/O operations File systems Communic.
Resource 
allocation

Logging

Error 
detection/ 
Corrxection

Protection and 
Security

O
S 

D
O

M
A

IN
G

R
AY

 D
O

M
A

IN

10/12/2024 Introduction to Operating Systems 3



OPERATING SYSTEM SERVICES

 Operating systems provide an environment for execution of programs and services to programs and 
users

 Services helpful to the user:

 User interface — Command-Line (CLI), Graphics User Interface (GUI),  touch-screen,  Batch

 Program execution — The system must be able to load a program into memory and to run that program, 
end execution, either normally or abnormally (indicating error)

10/12/2024 Introduction to Operating Systems 4



OPERATING SYSTEM SERVICES

 Services helpful to the programs:

 I/O operations —  A running program may require I/O, which may involve a file or an I/O device

 File-system manipulation —  The file system is of particular interest. Programs need to read and write files 
and directories, create and delete them, search them, list file Information, permission management.

 Communications — Processes may exchange information, on the same computer or between computers 
over a network

10/12/2024 Introduction to Operating Systems 5



OPERATING SYSTEM SERVICES

 Functions for ensuring the efficient operation of the system via resource sharing

 Resource allocation — When  multiple users or multiple jobs run concurrently, resources must be allocated to each 
of them.

 Logging — To keep track of which users use how much and what kinds of computer resources

 Protection and security — The owners of information stored in a multiuser or networked computer systems may 
want to control use of that information, concurrent processes should not interfere with each other

 Protection involves ensuring that all access to system resources is controlled

 Security of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid 
access attempts

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user program

 For each type of error, OS should take the appropriate action to ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and programmer ’s abilities to efficiently use the system

10/12/2024 Introduction to Operating Systems 6



SYSTEM CALLS

 A system call is a programmatic way in which a 
computer program requests a service from the 
kernel of the operating system it is executed on. 

 A system call is a way for programs to interact with 
the operating system. 

 A computer program makes a system call when it 
requests the operating system’s kernel.

10/12/2024 7Introduction to Operating Systems

[Taken from Operating Systems 10th Edition — Silbershatz, Galvin and Gagne © 2018]



OPERATING SYSTEMS ARCHITECURES

10/12/2024 8Introduction to Operating Systems

Operating 
System

Memory/Service 
Layout

Flat

Layered



FLAT ARCHITECTURE

 No strict memory separation between application 
and operating system

 Intended to provide most of the functionalities in 
the smallest space with minimum hardware support

 The components of the operating system are 
essentially functions that any application can invoke

 Examples

 FreeRTOS

 Micrium mC/OS

 MS-DOS

 FreeDos

9

RAM 

Memory

System-call interface

CPU 
manager

Memory
manager

File
manager

Hw-specific services

Device
manager

Application

User 
address 

space

Kernel 
address
space

10/12/2024 Introduction to Operating Systems



FLAT ARCHITECTURE 

10/12/2024 10Introduction to Operating Systems

void sys_write (…) {

...

}

Int sys_read (…) {

}

Syscall.c

void scheduler (…) {

...

}

scheduler.c

int main (…) {

   hw_init();

 os_init();

   …

   scheduler();

 …

 while(1);

}

main.c

compile link
OS 

(binary image, 
e.g., elf)

OS BUILD PROCESS



HOW AN OS RUN?

10/12/2024 11Introduction to Operating Systems

OS (binary 
image)

CPU
Boot 
Flash 
(NOR)

I/O

RAM
Memory

Microcontroller (MCU)
Memory MAP

0.5 GB NOR Flash
0x00000000

0x1FFFFFFF

0.5 GB RAM
0x20000000

0x3FFFFFFF

Peripherals

Vendor Specific

Reset Vector

Embedded 
Board 

Programmer



HOW AN OS RUN?

10/12/2024 12Introduction to Operating Systems

OS (elf image)

CPU

Boot 
Flash 
(NOR)

I/O

RAM
Memory

Microprocessor

Mass Storage 
Flash (NAND)

Boot Loader

A bootstrap loader is a program that loads 
the operating system or runtime 
environment for the computer after 
completion of self-tests

1. Initialize essential hardware (e.g., mass 
storage flash)

2. Load the OS image in RAM

3. Jump to the first instruction of the OS



WHAT ABOUT APPLICATION PROGRAMS?

10/12/2024 13Introduction to Operating Systems

Operating 
System

Flat Architecture

Fixed

Programmable



FIXED TASKS

 No need to change the build and run model

10/12/2024 14Introduction to Operating Systems

void sys_write (…) {

...

}

Int sys_read (…) {

}

Syscall.c

void scheduler (…) {

...

}

scheduler.c

int main (…) {

    hw_init();

 os_init();

 scheduler();

 …

 while(1);

}

scheduler.c

compile link
OS (binary 

image)

int task1 (…) {

 …

}

Int task2 () {

 …

}

tasks.c



PROGRAMMABLE TASKS

10/12/2024 15Introduction to Operating Systems

void sys_write (…) {

...

}

Int sys_read (…) {

}

Syscall.c

void scheduler (…) {

...

}

scheduler.c

int main (…) {

   os_init();

   …

   scheduler();

 …

 while(1);

}

scheduler.c

compile link OS (elf image)

int loader (…) {

 …

}

loader.c

OS BUILD PROCESS



LOADER

 A loader is a system software program that 
performs the loading function.

 Loading is the process of placing the program  
into memory for execution.

 The loader is responsible for initiating the 
execution of the process.

OS (elf image)

CPU

Boot 
Flash 
(NOR)

I/O

RAM
Memory

Microprocessor

Mass Storage 
Flash (NAND)

app (elf image)

Loader

O
p

er
at

in
g 

Sy
st

em

10/12/2024 Introduction to Operating Systems 16



LINKERS AND LOADERS

 Source code compiled into object files designed to be loaded into 
any physical memory location – relocatable object file

 Linker combines these into single binary executable file

 Also brings in libraries

 Program resides on secondary storage as binary executable

 Must be brought into memory by loader to be executed

 Relocation assigns final addresses to program parts and adjusts code 
and data in program to match those addresses

 Modern general-purpose systems don’t link libraries into 
executables

 Rather, dynamically linked libraries (in Windows, DLLs) are loaded as 
needed, shared by all that use the same version of that same library 
(loaded once)

 Object, executable files have standard formats, so operating 
system knows how to load and start them

[Taken from Operating Systems 10th Edition — Silbershatz, Galvin and Gagne © 2018]

10/12/2024 Introduction to Operating Systems 17



FLAT ARCHITECTURE

 No strict memory separation between application 
and operating system

 Intended to provide most of the functionalities in 
the smallest space with minimum hardware support

 The components of the operating system are 
essentially functions that any application can invoke

 Examples

 FreeRTOS

 Micrium mC/OS

 MS-DOS

 FreeDos

 Malfunctions can freely propagate corrupting the 
system

18

System-call interface

CPU 
manager

Memory
manager

File
manager

Hw-specific services

Device
manager

Application

User 
address 

space

Kernel 
address
space

RAM 
Memory

10/12/2024 Introduction to Operating Systems



MONOLITHIC KERNEL

 The computing architecture is split into two 
separated domains

 User space: running application and systems 
programs

 Kernel space: The OS kernel including everything 
below the system-call interface and above the 
physical hardware

 There is separation between kernel memory and 
user memory

 They require additional hardware support such as 
MMU, MPU and CPU operating modes

 Examples

 Linux

 Malfunctions in the application cannot propagate 
to the kernel

System-call interface

CPU 
manager

Memory
manager

File
manager

Hw-specific services

Device
manager

Application

User 
address 

space

Kernel 
address
space

10/12/2024 Introduction to Operating Systems 19



MONOLITHIC KERNEL

 No protection between operating systems components

 Faulty drivers can crash the whole system

 More than 2/3 of today OS code are drivers

 Few figures

 Drivers cause 85% of Windows XP crashes

 Error rate in Linux drivers is 3x than in other part of the Kernel

 Causes for driver bugs:

 23% programming errors

 38% mismatch regarding device specification

 39% OS/Driver interface misconception

20
10/12/2024 Introduction to Operating Systems



MONOLITHIC KERNEL

 User space and kernel space execution benefit from the availability of different execution modes in 
the CPU

[Taken from Operating Systems 10th Edition — Silbershatz, Galvin and Gagne © 2018]

10/12/2024 Introduction to Operating Systems 21



MONOLITHIC KERNEL EXAMPLES

Traditional Unix Architecture

Linux Architecture (monolithic + modules)

[Figures Taken from Operating Systems 10th Edition — Silbershatz, Galvin and Gagne © 2018]

10/12/2024 Introduction to Operating Systems 22



MICROKERNELS

 Moves as much from the kernel into user space

 Communication takes place between user modules using message passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space communication

10/12/2024 Introduction to Operating Systems 23



MICROKERNEL SYSTEM STRUCTURE 

 Malfunctions in the user space cannot corrupt the whole system

CPU 
manager

Memory
manager

File
manager

Hw-specific services

Application

IPC

Device 
Manager

Other System 
Services

message passing message passing

Ke
rn

el
 m

o
d

e
U

se
r 

m
od

e

10/12/2024 Introduction to Operating Systems 24



MICROKERNEL EXAMPLES

Darwin (Mac OSX)
IOS

[Figures Taken from Operating Systems 10th Edition — Silbershatz, Galvin and Gagne © 2018]

10/12/2024 Introduction to Operating Systems 25



MONOLITHIC KERNELS VS MICROKERNELS

 Microkernels can be better validated than monolithic kernel as much smaller

 Less code to read and checks, easier to guarantee the correctness of the code

 Example: i386

 L4 microkernel: 15.000 lines of code

 Linux: 300.000 lines of code excluding drivers

 Monolithic kernels have better performance in

 Executing system calls

 Calls between operating system components

26
10/12/2024 Introduction to Operating Systems



MONOLITHIC KERNELS VS MICROKERNELS

 System call performance

 Monolithic kernel: 2 context switches

 Microkernel: 4 context switches

 Calls between operating system components

 Monolithic kernel: 1 function call

 Microkernel: 4 context switches

27

Microkernel

Device
Driver

Application

1 4 2 3

Application

1 2

Device
Driver Microkernel

Device
Driver

Networking

1 4 2 3

Networking

1

Device
Driver

10/12/2024 Introduction to Operating Systems



HYBRID SYSTEMS

 Most modern operating systems are not one pure model

 Hybrid combines multiple approaches to address performance, security, usability needs

 Linux and Solaris kernels in kernel address space, so monolithic, plus modular for dynamic loading of 
functionality

 Windows mostly monolithic, plus microkernel for different subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming environment

 Below is kernel consisting of Mach microkernel and BSD Unix parts, plus I/O kit and dynamically loadable 
modules (called kernel extensions)

10/12/2024 Introduction to Operating Systems 28



LET’S TRY TO WRITE A TOY FLAT OS

 https://baltig.polito.it/teaching-material/exercises-caos-and-os/myfirstos

10/12/2024 29Introduction to Operating Systems

https://baltig.polito.it/teaching-material/exercises-caos-and-os/myfirstos


THANK YOU!

QUESTIONS?


	Slide 1: INTRODUCTION TO OPERATING SYSTEMS
	Slide 2: OPERATING SYSTEM DEFINITION 
	Slide 3: A View of Operating System Services
	Slide 4: Operating System Services
	Slide 5: Operating System Services
	Slide 6: Operating System Services
	Slide 7: SYSTEM CALLS
	Slide 8: OPERATING SYSTEMS ARCHITECURES
	Slide 9: Flat architecture
	Slide 10: FLAT ARCHITECTURE 
	Slide 11: HOW AN OS RUN?
	Slide 12: HOW AN OS RUN?
	Slide 13: WHAT ABOUT APPLICATION PROGRAMS?
	Slide 14: FIXED TASKS
	Slide 15: PROGRAMMABLE TASKS
	Slide 16: Loader
	Slide 17: Linkers and Loaders
	Slide 18: Flat architecture
	Slide 19: Monolithic KERNEL
	Slide 20: monolithic kernel
	Slide 21: Monolithic KERNEL
	Slide 22: MONOLITHIC KERNEL EXAMPLES
	Slide 23: Microkernels
	Slide 24: Microkernel System Structure 
	Slide 25: MICROKERNEL EXAMPLES
	Slide 26: Monolithic kernels vs Microkernels
	Slide 27: Monolithic kernels vs Microkernels
	Slide 28: Hybrid Systems
	Slide 29: LET’S TRY TO WRITE A TOY FLAT OS
	Slide 30

