AW
s iy - . .

¥ 32 ~y Politecnico
. my di Torino

Yy W

] 1] pr

\\‘\ 1859 ," Department of Control and
- e Computer Engineering

-

&
2

SMILIeS

re ilientco puter arch tectures
and f ciences

INTRODUCTION TO ARM
PROCESSOR

FLOW OF TOPICS

ARM Architecture

ARM programmer’s model

ARM Development tools

Memory Hierarchy

ARM Assembly Language Programming

Simple Examples

vV v v v v v Vv

Architectural Support for Operating systems

10/10/2024 Introduction to ARM architecture

“’ smiLies

ARM ARCHITECTURE

ARM ARCHITECTURE

Follows RISC (Reduced Instruction Set Computer) Architecture Bit 31 Bit 0

SmiLies

Both in Von Neumann and Harvard Architecture Word 4

I
Byte2 | Bytel
]

Both Little endian and Big endian Byte 3 Byte 0 Word 0

32-bit processor
32-bit address line

Little-endian

Features Used from RISC design Bit 31 Bit 0

A Load/Store Architecture Word 4

Fixed length 32-bit instructions Byte 0 Byte 3 Word 0

[
Bytel | Bytez
|

3 operands instruction formats Big-endlan
Features rejected from RISC design

Register windows: several set of registers used for different function calls

Delayed branches: a technique to reduce pipeline stalls caused by branch instructions. The instruction immediately
following a branch instruction (the branch delay slot) is always executed, regardless of whether the branch is taken or not.

Single cycle execution of all instructions

10/10/2024 Introduction to ARM architecture

“’ smiLies

Programming Model

10/10/2024 Introduction to ARM architecture

PROGRAMMING MODEL 'J“m’

ARM’s Register

CPSR Register

Memory System

Load Store Architecture
ARM Instruction Set

|/O system

vV v v v v v Vv

ARM exceptions

10/10/2024 Introduction to ARM architecture

SmiLies

ARM REGISTERS (USER MODE)

User/Sys FlQ IRQ SVC Undef Abort
General purpose registers (r0 to r12): 32bit general -
purpose registers. :1
SP - Stack Pointer (r13): typically used as the stack r2 s
pointer, pointing to the top of the current stack in = =55
memory. = r0-r7 = .
.] _ x5 -::: x User User
LR - Link Register (r14): holding the return address for r6 b s mode mode
function calls. When a function is called, the address of x7 X0 x1e ELELS
the instruction following the call is stored in R14, so the r8 r8
program can return to that point after the function r9 r9
execution completes. £10 ¥19
rll rll
PC - Program Counter (r15): holds the address of the r12 r12
next instruction to be executed. It automatically r13 (sp) r13 (sp)| [£13 (sp) r13 (sp) - r13 (sp)
increments with each instruction fetch and can also be ri4 (lr) ri4 (1r)| |[r14 @z [r14 Qx) ri4 (lr)
manipulated for branching and jumping operations. r15 (pc) r15 (pc)| [r15 (pc) r15 (pc)| [r15 (pc) r15 (pc)
Status register (CPSR) == e =)

10/10/2024 Introduction to ARM architecture

CURRENT PROGRAM STATUS REGISTERS
flags control
I [N 1
K} 30 29 28 B 7 6 5 4 3 2 1 0
N | Z c |V . . . I F . | M4 | M3 | M2 | M1 | MO
L [|
‘ Overflow L Mode bits
Carry / Borrow / Extend FIQ disable
Zero IRC disable
Megative | Less Than

Condition code flags Interrupt Disable bits.

N = Negative result from ALU | =1: Disables the Interrupt ReQuest (IRQ).

7 = Zero result from ALU F = 1: Disables the Fast Interrupt request (FIQ).

C = ALU operation Carried out T Bit
V = ALU operation oVerflowed Architecture xT only
Mode bits T =0: Processor in ARM state

Specify the processor mode T = 1: Processor in Thumb state

10/10/2024 Introduction to ARM architecture

SmiLies

CURRENT PROGRAM STATUS REGISTERS

flags control
I [1

3 30 29 28 27 B [i} =] 4 3 2 1 0
all N I A S LA T el e Fast Interrupt mode (figq) — supports a high-speed data
L ode bis transfer or channel process.

L Overflow
Carry / Borrow / Extend FIQ disable
Zero IRQ disable

Negative / Less Than

User mode(usr) — normal program execution mode

Interrupt mode (irq) — psed for general-purpose
interrupt handling.

B10000 = User mode Supervisor mode (svc) — protected mode for the
operating system.

b10001 = FIQ mode . ,
Abort mode (abt) — implements virtual memory

b10010 = IRQ mode and/or memory protection

b10011 = Supervisor mode System mode (sys) — A privileged user mode for the

operating system. (runs OS tasks)
bi10111 = Abort mode
Undefined mode (und) — supports a software

b11011 = Undefined mode emulation of hardware coprocessors

b11111 = System mode. Except user mode, all are known as privileged mode.

10/10/2024 Introduction to ARM architecture

SmiLies

SUPERVISOR MODE

» A protection mechanism ensures that user code
cannot gain supervisor privileges without
appropriate checks.

» System-level functions can only be accessed
through specified supervisor calls.

» These functions generally include any accesses to

e o O e S ———— .

hardware peripheral registers, and to widely used S“Uiﬂc
. . . ‘nstf
operations, i.e., character input and output. i I Priviloged
Mode
> The SVC .mo<.3Ie can be entered when an SVC Ueer Task !
instruction is executed. |
UnPrivileged :
Mode I
]
]
|
]

10/10/2024 Introduction to ARM architecture

REGISTER ORGAN |ZATION SUMMARY

SmiLies
User IRQ Undef Abort
r0
rl
User
r2 mode
r3 rO-r7,
ra rls, User User User User
= and mode mode mode mode Thumb state
6 Cpsr ro-rl2, rO-r12, ro-rl2, ro-ri2, Low registers
ris, ri5, r15, ris,
EEEEER r7 IiEEER imEnm and IiEEER and imEnm and IiEEER and IEEEEEEEEEEEEEEEEEER
r8 r8 cpsr cpsr cpsr cpsr
ro ro
r10 r10 Thumb state
ol L High registers
ri2 ri2

r13 (5p) r13 (5p) r13 (sp)
r14 (r) r14 (r

r15 (pc)

cpsr

spsr spsr spsr spsr spsr

Note: System mode uses the User mode register set

10/10/2024 Introduction to ARM architecture

MEMORY SYSTEM

SmiLies

» In addition to the processor register, ARM system
has memory state

;*—- bit 31 bito—v;
» Memory may be viewed as a linear array of bytes T

numbered form O up to 232 -1 5 2 # 2
» Data items may be 8-bit bytes, 16-bit half words or 19 18 d1167 16
32-bit words ol
15 14 13 12
» Words are always aligned on 4-byte boundaries half-word14 half-word12
» Half words are aligned on even byte boundaries _Ll_ 1?No|rd89 | 2
» Byte may occupy any of these locations 7 [6 I 5 l 4
byte6 half-word4
3] 2] 1] 0 fle bé’:je
byte3 byte2 byte1 byte0 BOOnS

10/10/2024 Introduction to ARM architecture

SmiLies

LOAD STORE ARCHITECTURE

ARM does not support 'memory-to-memory' operations.

All ARM instructions fall into one of the following three categories:

Data processing instructions — use and change only register values. For example, an instruction can add
two registers and place the result in a register.

Data transfer instructions — copy memory values into registers (load instructions) or copy register values
into memory (store instructions).

Control flow instructions —cause execution to switch to a different address, either permanently (branch
instructions) or saving a return address to resume the original sequence (branch and link instructions) or
trapping into system code (supervisor calls).

10/10/2024 Introduction to ARM architecture

|/0 SYSTEM

10/10/2024

The ARM handles I/O (input/output) peripherals
(such as disk controllers, network interfaces, and so
on) as memory-mapped devices with interrupt
support.

The internal registers in these devices appear as
addressable locations within the ARM's memory
map and may be read and written using the same
(load-store) instructions as any other memory
locations.

TM4C123GH6PM ARM Cortex M4 microcontroller

OxEOOFF000
O0xE0042000
0xE0041000
0xE0040000

OxEOQQOFQ00
OxEOQOEQ00D

OxE0003000

0xE0002000
0xE0001000
0xE0000000

0x43FFFFFF
0x42000000
0x41FFFFFF

0x40100000
0x40000000

0x23FFFFFF
0x22000000
0x21FFFFFF

0x20100000
0x20000000

Taken form https://stackoverflow.com/questions/74227194/how-does-memory-mapped-i-o-mmio-work-on-arm-

architectures

ROM Table

External PPB

ET™

TPIU

Vendor Specific

Reserved

Private Peripheral Bus - External

Private Peripheral Bus - Internal

NVIC
Reserved
FPB
DWT
IT™

External Device

1GB

Bit-band alias

Bit-band region

External RAM

SRAM 0.5GB

32M8 Bit-band alias
JiIMB
iMB _ Bit-band region

Code Area o0scs

Introduction to ARM architecture

OXEFFFFFFF

0xE0100000
0xE0040000

OxDFFFFFFF

0xA0000000
OxX9FFFFFFF

0x20000000
0X1FFFFFFF

0x00000000

SmiLies

SmiLies

ARM EXCEPTIONS

» The ARM architecture supports a range of interrupts, traps and urent Stack
supervisor calls, all grouped under the general heading of Save partial processor
exce tions. context on current

stack
» Step 1: The processor saves the current execution context e b J Veetor Table
(registers, program counter, and processor status) onto the stack. VTOoR
The stack pointer is set to point to the current stack, which is MSP or PSP /

+ Exception

number

typically the main stack pointer (MSP) or process stack pointer (akter save)
(PSP), depending on the configuration.

Exception Vectors

Step 2: Set the return code in the Link Registrer

» Step 3: Change the execution mode (if needed) and set a new
stack (if needed)

Retrieve new PC from
vector table

» Step 4: The processor uses the vector table to identify the
corresponding exception handler address for the triggered
exception. The vector table is typically located at a fixed memory Set v
address. code in LR

» Once the exception is handled, the processor executes the BX LR T stk J
instruction (or BX with the link register) to return to the main
program. Before returning, the processor restores the saved
context from the stack.

10/10/2024 Introduction to ARM architecture

ARM INSTRUCTION SET

SmiLies

The most notable features of the ARM instruction set are:
32 bits wide
Load-store architecture
3-address data processing instructions
conditional execution of every instruction
The inclusion of very powerful load and store multiple register instructions

The ability to perform a general shift operations and a general ALU operation in a single instruction that
executes in a single clock cycle

Open instruction set extensions through the coprocessor instruction set, including adding new registers and
data types to the programmer's model

A very dense 16-bit compressed representation of the instruction set in the Thumb architecture

10/10/2024 Introduction to ARM architecture

ARM ASSEMBLY LANGUAGE PROGRAMMING 'ﬂ[ﬂﬁﬂ’"

Data processing Instructions
Data Transfer Instructions

Control flow Instruction

[https://iitd-plos.github.io/col718/ref/arm-instructionset.pdf]

10/10/2024 Introduction to ARM architecture

DATA PROCESSING INSTRUCTIONS ,!]“m’

Simple register operands
Register movement operations
Comparison operations
Immediate Operands

Shifted register operands
Multiplies

10/10/2024 Introduction to ARM architecture

SIMPLE REGISTER OPERANDS “Uemues

; Simple math operations

ADD r0O, rl, r2 ; r0O := rl + xr2

ADC r0, rl, r2 ; rO:=rl + r2 + C

SUB rO, rl, r2 ; rOQO := rl - r2

SBC rO0, rl, r2 ; r0 := rl

RSB r0O, rl, r2 ; r0O := r2 - rl

RsC r0, rl, r2 ; r0 :=r2 - rl + C -1
; Simple logical operations

AND r0O, rl, r2 ; r0 and r2
ORR r0, rl, r2 r0O or r2

EOR r0O, rl, > r0 X0r r2

BIC r0, rl, ; r0 and nor r2 (Bit Clear)

10/10/2024 Introduction to ARM architecture

REGISTER MOVEMENT OPERATIONS W‘f

10/10/2024 Introduction to ARM architecture

COMPARISON OPERATIONS

Compare and set flags
As AND but result i1s not written
As ADD, but result 1s not written

As EOR, but result 1s not written

10/10/2024 Introduction to ARM architecture

IMMEDIATE OPERANDS iﬁ}ﬂﬁl"

10/10/2024 Introduction to ARM architecture

SHIFTED REGISTER OPERANDS

) 0 N Q
<OPERATION> r3, r3, #amount — _J | -
¥ 4 _ ﬁ
Logical Shift Left (LSL) — Shifts bits to the left and fills the [00000 00000
vacated bits with zeros . L
Logical Shift Right (LSR) — Shifts bits to the right and fills the - " . 5
vacated bits with zeros n] []
Arithmetic Shift Right (ASR) — Shifts bits to the right and fills) _ K ‘
the vacated bits with the sign bit (most significant bit). [) \] | L) \J
QDO00 O 11111 1
Rotate Right (ROR) — Rotates bits to the right. The bits shifted '
out from the right end are wrapped around to the left end. iR #5, posiiive operand R #5, nagaiive opemnd
Rotate Right with Extend (RRX) — Performs a right rotation ” o o 0
with the least significant bit (LSB) being loaded into the carry | - [L]
flag. The most significant bit (MSB) is filled with the carry. < S —\
LR . R
| | g

ARM Instructions ARM instructions can utilize these shift
operations directly in their operands.

ADD RO, R1, R2, LSL #2 ; R2 i shifted left by 2 before being added to RI1
SUB R3, R4, R5, LSR #1 ; is shifted right by 1 before being subtracted from R4

MOV R6, R7, ASR #3 ; R7 is arithmetically shifted right by 3 and moved to R6

10/10/2024 Introduction to ARM architecture

MULTIPLICATIONS “Uemues

MUL rd, r3, r2 ; = r3 * r2
MLA rd, r3, r2, rl ; := r3 * r2 + ril

; Immediate second operands are not supported.

;The result register must not be the same as the first source

register.

10/10/2024 Introduction to ARM architecture

DATA TRANSFER INSTRUCTIONS '!IIW"

» Basic addressing

» Multiple register data transfer

» Swap

10/10/2024 Introduction to ARM architecture

DATA TRANSFER INSTRUCTIONS

LDR
STR
LDRH
STRH
LDRSH

LDRE
STRB

ADR

Load

store

Load half-word

Store half-word

Load half-word signed
Load byte

Store byte

Set register to address

l]' smiLies

10/10/2024

Introduction to ARM architecture

BASIC ADDRESSING “Uemues

; Register Indirect Addressing Mode

LDR r0, [rl] ; rO := mem;,[rl]

STR r0, [rl] ; mems, [rl]

; Initlalizing an address polnter

ADR rl, TABLE ; rl stores the Address of TABLE
; Base Plus Offset

LDR rQ, [rl, #4] ; 0= mem32[rl+4]

10/10/2024 Introduction to ARM architecture

MULTIPLE REGISTER DATA TRANSFER W‘f

STMIA r0!, {rl,r2} ; mems, [rO]

; mems, [rO+4]

; rO := r0 + 8
STMIA rO, {rl-r3} ; mems, [rO] := rl
rO+4] :
r0o+8] : r3
LDMIA rO!, {rl,r2} ; rl := mems,[r0]

; mems, [
; mems, [
; r2 := memsy, [r0+4]
; rO := r0 + 8
LDMIA rO, {rl-r3} ; rl := mems;, [r0]
; rZ2 1= mems, [r0+4]

; r2 := mems, [r0+8]

10/10/2024 Introduction to ARM architecture

SmiLies

SWP rO, rl, [r2] ;Load RO with the word addressed by R1 and store
rl at r2

SWPB r2, r3, [r4] ;Load R2Z2 with the byte addresse by r4 and store
bits 0 to 7 of R3 at R4

SWPEQ r0, r0O, [rl] ;Conditionally swap (1if Z flag 1is set) the

contents of the word addressed by R1 with r0

10/10/2024 Introduction to ARM architecture

CONDITIONAL BRANCHES

Branch Interpretation

B BAL Unconditional
Always

BEQ Z=1 Equal

MNormal uses

" Always take this branch

Always take this branch

' Comparison equal or zero result

BENE Z7Z=0 Not equal
BPFL N=0 Plus
BMI N=1 Minus

Companson not equal or non-zero result

" Result positive or Zero

" Result minus or negative

BCC C=0 Carry clear

Anthmetic operation did not give carry-out

ELO Lower Unsigned comparison gave lower
BCS C=1 Carmry set Higher Arithmetic operation gsave carry-out
BHS Of same Unsigned companson gave higher or same

BVC V=0 Overflow clear

' Signed integer operation; no overflow occurred

BVS y=z1 Overflow set

BGT Greater than

Signed integer operation; overflow occurred

. Signed integer companson gave greater than

BGE N=V Greater or equal

Signed integer comparnison gave greafer or equal

ELT NIzV Less than

Signed integer conmparison gave less than

BLE Less or equal Signed integer comparison gave less than or equal
BHI " Higher " Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave lower or same

10/10/2024

Introduction to ARM architecture

Z=0 & N=V

Z=1 & N!=V

C=1&27=0
C=0&2z-1

SmiLies

Department of Control and
Computer Engineering

SMiLIesS
re ilientco puter arch tectures QUESTIONS?

and ' f- “ciences

THANKYOU!

	Slide 1: Introduction to ARM processor
	Slide 2: Flow of Topics
	Slide 3: ARM ARCHITECTURE
	Slide 4: ARM Architecture
	Slide 5: Programming Model
	Slide 6: Programming Model
	Slide 7: ARM Registers (USER MODE)
	Slide 8: Current Program Status Registers
	Slide 9: Current Program Status Registers
	Slide 10: Supervisor Mode
	Slide 11: Register Organization Summary
	Slide 12: Memory System
	Slide 13: Load Store Architecture
	Slide 14: I/O System
	Slide 15: ARM Exceptions
	Slide 16: Arm Instruction Set
	Slide 17: ARM Assembly Language Programming
	Slide 18: Data Processing Instructions
	Slide 19: Simple Register Operands
	Slide 20: Register movement operations
	Slide 21: Comparison operations
	Slide 22: Immediate operands
	Slide 23: Shifted Register Operands
	Slide 24: MULTIPLICATIONS
	Slide 25: Data Transfer Instructions
	Slide 26: Data Transfer Instructions
	Slide 27: BASIC ADDRESSING
	Slide 28: Multiple register data transfer
	Slide 29: SWAP
	Slide 30: Conditional Branches
	Slide 31

