
CROSS PLATFORM

DEVELOPMENT
STEFANO DI CARLO

WHAT IS CROSS DEVELOPMENT

 Cross development is the process of
developing code on one machine – the host,
to run on another machine – the target

 The host is a normal, powerful machine
running an operating system

 The target is often a single board computer
that may have no or limited software and
hardware resources

Bootloader

Operating System

Application

Target System

Debugger
(Local/Remote)

Cross compiler

Host System

Emulator

Ethernet/Serial/Custom (BDM/JTAG)

Board Programmer

210/7/2024 Cross platform development

FEATURES OF CROSS DEVELOPMENT

 The code created can’t run on the host system

 Sometimes an emulator is used

 Special tools are required

 The standard PC compiler won’t do!

 The code must be moved from the host to the board

310/7/2024 Cross platform development

WHY CROSS DEVELOP?

 Code is cross developed for several reasons

 Frequently the development can’t be done on the board

 The board has no disc, compiler, screen etc

 The development environment is very powerful and fast

 Games developers do this

 Often the development might be done by a team on networked machines

410/7/2024 Cross platform development

CROSS DEVELOPMENT TOOLS

 To do cross development you need special tool kits, sometimes called toolchains. These consist of

 Cross compiler, assembler and linkers

 Programming and conversion software

 Remote debuggers

 Useful utilities

 Files to dump or strip binary files, all in binutils.

510/7/2024 Cross platform development

COMPILER

6

 Before we understand what cross compilers do it might be worth reviewing what compilers do

 They take an input text source program file and output an executable binary output file (or some error
messages!)

Source
Program
file

Executable
Binary
File

10/7/2024 Cross platform development

THE COMPILATION PROCESS IN DETAIL

cc –flags myfile.c thisfile.o

Preprocessing Compilation Optimization* Link/loading

#includes
.h header files
#defines

Text
Assembler or
Object format

Relocatable
Object file

Executable
Binary and
.map file

Object files
Library file
Start-up code

*optional

710/7/2024 Cross platform development

EXECUTABLE FORMATS

 There are a number of different exectuable formats

 A.out is the traditional UNIX format

 Elf – Executable and Linking Format

 COFF – Common Object File Format

 Plus lots of others

810/7/2024 Cross platform development

MAP FILE

 A .map file is a detailed report generated by the linker during the build process of a program.

 It provides valuable information about the memory layout and symbol addresses in the final
executable

 Memory layout (see later)

 Symbol Table (the addresses of all global variables, functions, and objects)

 Section Mapping (see later)

 Stack and Heap Usage (if available)

 Function Sizes: the size of each function and its location in memory

 This file is useful for debugging, optimizing memory usage, and understanding how the linker has
allocated sections of code and data in memory.

910/7/2024 Cross platform development

CROSS COMPILER

 Target system (e.g., ARM) != Host system (e.g., x86)

10

Source Code
(.C)

Parserx86
(.C → .SARM)

Assemblerx86
(.SARM→.oARM)

Object Code
(.oARM)

Standard C libraryARM
(libstdc.a)

Linkerx86
(.oARM→.outARM)

Executable
(.outARM)

System Map
(.map)

10/7/2024 Cross platform development

WHAT IS CROSS DEVELOPMENT

Target System

Cross compiler

Host System

Debugger

Ethernet/Serial/Custom (BDM/JTAG)

Board Programmer

Source Code (.C)

Executable (.out)

CPU

Firmware
Flash (NOR)

Mass Memory
Flash (NAND)I/O

RAM
Memory
(DRAM/SRAM)

Target system

1110/7/2024 Cross platform development

PROGRAMS IN MEMORY

12

.text

.data

.rodata

.bss

heap

Argv and env vars

stack

Memory Area Section
Name

Section
Type

Write
Operation

Initial
Value

Contents

Program .text Code No Yes Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized
data

.data Data Yes Yes Initialized global and static data

Uninitialized
data

.bss Data Yes No Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, realloc, …)

Stack -- -- Yes No Dynamic area required for program
execution

Command
line

-- Data Yes Yes Area where command line arguments are
stored. It is the initial part of the stack

10/7/2024 Cross platform development

PROGRAMS IN MEMORY

13

Memory Area Section
Name

Section
Type

Write
Operation

Initial
Value

Contents

Program .text Code No Yes Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized
data

.data Data Yes Yes Initialized global and static data

Uninitialized
data

.bss Data Yes No Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, realloc, …)

Stack -- -- Yes No Dynamic area required for program
execution

Command
line

-- Data Yes Yes Area where command line arguments are
stored. It is the initial part of the stack

const int alfa=25;

int beta = 44;

char tmp;

int foo(int X)

{

 char *ptr;

 ptr = (char *)malloc(X);

}

int main(int argc, char ** argv)

{

 int a = foo (3);

}

10/7/2024 Cross platform development

PROGRAMS IN MEMORY

14

Memory Area Section
Name

Section
Type

Write
Operation

Initial
Value

Contents

Program .text Code No Yes Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized
data

.data Data Yes Yes Initialized global and static data

Uninitialized
data

.bss Data Yes No Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, realloc, …)

Stack -- -- Yes No Dynamic area required for program
execution

Command
line

-- Data Yes Yes Area where command line arguments are
stored. It is the initial part of the stack

const int alfa=25;

int beta = 44;

char tmp;

int foo(int X)

{

 char *ptr;

 ptr = (char *)malloc(X);

}

int main(int argc, char ** argv)

{

 int a = foo (3);

}

10/7/2024 Cross platform development

PROGRAMS IN MEMORY

15

Memory Area Section
Name

Section
Type

Write
Operation

Initial
Value

Contents

Program .text Code No Yes Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized
data

.data Data Yes Yes Initialized global and static data

Uninitialized
data

.bss Data Yes No Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, realloc, …)

Stack -- -- Yes No Dynamic area required for program
execution

Command
line

-- Data Yes Yes Area where command line arguments are
stored. It is the initial part of the stack

const int alfa=25;

int beta = 44;

char tmp;

int foo(int X)

{

 char *ptr;

 ptr = (char *)malloc(X);

}

int main(int argc, char ** argv)

{

 int a = foo (3);

}

10/7/2024 Cross platform development

PROGRAMS IN MEMORY

16

Memory Area Section
Name

Section
Type

Write
Operation

Initial
Value

Contents

Program .text Code No Yes Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized
data

.data Data Yes Yes Initialized global and static data

Uninitialized
data

.bss Data Yes No Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, realloc, …)

Stack -- -- Yes No Dynamic area required for program
execution

Command
line

-- Data Yes Yes Area where command line arguments are
stored. It is the initial part of the stack

const int alfa=25;

int beta = 44;

char tmp;

int foo(int X)

{

 char *ptr;

 ptr = (char *)malloc(X);

}

int main(int argc, char ** argv)

{

 int a = foo (3);

}

10/7/2024 Cross platform development

PROGRAMS IN MEMORY

17

Memory Area Section
Name

Section
Type

Write
Operation

Initial
Value

Contents

Program .text Code No Yes Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized
data

.data Data Yes Yes Initialized global and static data

Uninitialized
data

.bss Data Yes No Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, realloc, …)

Stack -- -- Yes No Dynamic area required for program
execution

Command
line

-- Data Yes Yes Area where command line arguments are
stored. It is the initial part of the stack

const int alfa=25;

int beta = 44;

char tmp;

int foo(int X)

{

 char *ptr;

 ptr = (char *)malloc(X);

}

int main(int argc, char ** argv)

{

 int a = foo (3);

}

10/7/2024 Cross platform development

PROGRAMS IN MEMORY

18

Memory Area Section
Name

Section
Type

Write
Operation

Initial
Value

Contents

Program .text Code No Yes Stores machine code

Constants .rodata Data Yes Yes Constant data. This section may not be
produced.

Initialized
data

.data Data Yes Yes Initialized global and static data

Uninitialized
data

.bss Data Yes No Global data whose initial value is not
specified (zero initialized). BSS stands for
Block Started by Symbol

Heap -- -- Yes No Dynamic area allocation used by library
functions (malloc, realloc, …)

Stack -- -- Yes No Dynamic area required for program
execution

Command
line

-- Data Yes Yes Area where command line arguments are
stored. It is the initial part of the stack

const int alfa=25;

int beta = 44;

char tmp;

int foo(int X)

{

 char *ptr;

 ptr = (char *)malloc(X);

}

int main(int argc, char ** argv)

{

 int a = foo (3);

}

10/7/2024 Cross platform development

THANK YOU!

QUESTIONS?

	Slide 1: CROSS PLATFORM DEVELOPMENT
	Slide 2: What is cross development
	Slide 3: Features of cross development
	Slide 4: Why cross develop?
	Slide 5: Cross development tools
	Slide 6: COMPILER
	Slide 7: The compilation process IN detail
	Slide 8: Executable formats
	Slide 9: MAP FILE
	Slide 10: Cross compiler
	Slide 11: What is cross development
	Slide 12: PROGRAMS in memory
	Slide 13: PROGRAMS in memory
	Slide 14: PROGRAMS in memory
	Slide 15: PROGRAMS in memory
	Slide 16: PROGRAMS in memory
	Slide 17: PROGRAMS in memory
	Slide 18: PROGRAMS in memory
	Slide 19

