-

&

AW
s iy - . .
¥ 32 ~y Politecnico
. my di Torino
Yy W
gL 1] pr
\\‘\ 1859 ," Department of Control and
‘-\.\q.l!-v" Computer Engineering

SMILIeS

re ilientco puter arch tectures
and f ciences

INTRODUCTION TO OPERATING
SYSTEMS

OPERATING SYSTEM DEFINITION

10/12/2024

An Operating System (OS) is a System Software that
manages computer hardware and software

resources and provides services to users programs.

hardware of a computer.

SmiLies

. . System-Call Interface
It acts as an intermediary between users and the

Hardware Specific Services

Introduction to Operating Systems

SmiLies

A VIEW OF OPERATING SYSTEM SERVICES

GRAY DOMAIN

System calls

Program . : . Resource .
. |/O operations File systems Communic. . Loggin
Execution - allocation

Error
detection/
Corrxection

OS DOMAIN

Protection and
Security

10/12/2024 Introduction to Operating Systems

SmiLies

OPERATING SYSTEM SERVICES

Operating systems provide an environment for execution of programs and services to programs and
users

Services helpful to the user:

User interface — Command-Line (CLI), Graphics User Interface (GUI), touch-screen, Batch

Program execution — The system must be able to load a program into memory and to run that program,
end execution, either normally or abnormally (indicating error)

10/12/2024 Introduction to Operating Systems

SmiLies

OPERATING SYSTEM SERVICES

Services helpful to the programs:

I/O operations — A running program may require I/O, which may involve a file or an I/O device

File-system manipulation — The file system is of particular interest. Programs need to read and write files
and directories, create and delete them, search them, list file Information, permission management.

Communications — Processes may exchange information, on the same computer or between computers
over a hetwork

10/12/2024 Introduction to Operating Systems

SmiLies

OPERATING SYSTEM SERVICES

Functions for ensuring the efficient operation of the system via resource sharing

Resource allocation — When multiple users or multiple jobs run concurrently, resources must be allocated to each
of them.

Logging — To keep track of which users use how much and what kinds of computer resources

Protection and security — The owners of information stored in a multiuser or networked computer systems may
want to control use of that information, concurrent processes should not interfere with each other

Protection involves ensuring that all access to system resources is controlled

Security of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid
access attempts

Error detection — OS needs to be constantly aware of possible errors

May occur in the CPU and memory hardware, in 1/O devices, in user program
For each type of error, OS should take the appropriate action to ensure correct and consistent computing

Debugging facilities can greatly enhance the user’s and programmer’s abilities to efficiently use the system

10/12/2024 Introduction to Operating Systems

SYSTEM CALLS

A system call is a programmatic way in which a
computer program requests a service from the
kernel of the operating system it is executed on.

A system call is a way for programs to interact with

the operating system.

A computer program makes a system call when it
requests the operating system’s kernel.

SmiLies

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write () system call. The C library takes the value returned by
write() and passes it back to the user program:

#include <stdio.h>
int main()
{

—printf ("Greetings");

return 0;

}

user
mode

standard C library —

kernel

mode
write()
write()

system call

[Taken from Operating Systems 10t Edition — Silbershatz, Galvin and Gagne © 2018]

10/12/2024

Introduction to Operating Systems

OPERATING SYSTEMS ARCHITECURES ’!Ilﬂﬁﬁ’"

Operating
System

Layered

10/12/2024 Introduction to Operating Systems

FLAT ARCHITECTURE

No strict memory separation between application
and operating system

Intended to provide most of the functionalities in
the smallest space with minimum hardware support

Application

The components of the operating system are

essentially functions that any application can invoke

System-call interface
Examples

FreeRTOS CPU Memory

manager manager
Micrium mC/0OS : :

Device

MS-DOS File

Manager Manager

FreeDos

Hw-specific services

SmiLies

User
address
space

Kernel
address
space

10/12/2024

Introduction to Operating Systems

FLAT ARCHITECTURE

Syscall.c scheduler.c main.c

void sys write (..) { void scheduler (..) { int main (..) {
hw init();

} os_init();

Int sys read (..) { scheduler () ;

} while (1) ;

0N
compile (binary image,
e.g., elf)

10/12/2024 Introduction to Operating Systems

SmiLies

HOW AN OS RUN?

Memory MAP

Microcontroller (MCU)

Vendor Specific

Peripherals

Ox3FFFFFFF
Embedded
Board
Programmer

0.5 GB RAM

0x20000000
OX1FFFFFFF

0x00000000 - Reset Vector

0.5 GB NOR Flash

OS (binary
image)

10/12/2024 Introduction to Operating Systems

HOW AN OS RUN? '!jl[m"

A bootstrap loader is a program that loads Microprocessor

the operating system or runtime
environment for the computer after £e8 Vs st
completion of self-tests A

Boot Flash (NAND)
1. Initialize essential hardware (e.g., mass /0 Flash
NOR

storage flash) (NOR)

2. Load the OSimage in RAM
3. Jump to the first instruction of the OS
Boot Loader OS (elf image)

10/12/2024 Introduction to Operating Systems

WHAT ABOUT APPLICATION PROGRAMS? ,!IIW"

\

Operating

Flat Architecture
System

>

Programmable

10/12/2024 Introduction to Operating Systems

FIXED TASKS

» No need to change the build and run model

Syscall.c scheduler.c scheduler.c tasks.c

vold sys write (..) { vold scheduler (..) { int main (..) { int taskl (..) {
hw init();
} os init(

}

) 7
scheduler () ; Int task2 () {

Int sys read (..) { .
while (1) ;

}

OS (binary

compile]

10/12/2024 Introduction to Operating Systems

PROGRAMMABLE TASKS R s

Syscall.c scheduler.c scheduler.c loader.c

vold sys write (..) { vold scheduler (..) { int main (..) { int loader (..) {
c. - os_1nit();
} . }
scheduler () ;
Int sys read (..) {

while (1) ;

}

compile OS (elf image)

10/12/2024 Introduction to Operating Systems

LOAD ER 4 UsmiLies

» A loader is a system software program that Microprocessor
performs the loading function.

» Loading is the process of placing the program

into memory for execution. Mass Storage
Flash (NAND)

» The loader is responsible for initiating the
execution of the process.

OS (elf image)

app (elf image)

Operating System

10/12/2024 Introduction to Operating Systems

SmiLies

LINKERS AND LOADERS

source ma in .C
program

Source code compiled into object files designed to be loaded into
any physical memory location — relocatable object file

compiler gcc -¢ main.c

Linker combines these into single binary executable file ¢
generates
Also brings in libraries

object main.o

Program resides on secondary storage as binary executable ne
object

Must be brought into memory by loader to be executed ge=.

A gcc -0 main main.o -1lm

Relocation assigns final addresses to program parts and adjusts code

<--.'4--64-—a<-_‘ *-"-.

and data in program to match those addresses ¢ generates
Modern general-purpose systems don’t link libraries into executable main
executables

Rather, dynamically linked libraries (in Windows, DLLs) are loaded as /main

needed, shared by all that use the same version of that same library s loader -/ma

(loaded once) linked

libraries /-«

Object, executable files have standard formats, so operating " e
system knows how to load and start them in memory

[Taken from Operating Systems 10t Edition — Silbershatz, Galvin and Gagne © 2018]

10/12/2024 Introduction to Operating Systems

FLAT ARCHITECTURE

No strict memory separation between application
and operating system

Intended to provide most of the functionalities in
the smallest space with minimum hardware support

The components of the operating system are
essentially functions that any application can invoke

Examples
FreeRTOS
Micrium mC/0OS
MS-DOS

FreeDos

SmiLies

Malfunctions can freely propagate corrupting the
system

Application

User
address
space

System-c2ll interface
C N

CPU Memcrv

Fnanager Manager
Kernel

address
space

File Nevice
'‘lanager manager

Hw-specific services

10/12/2024

Introduction to Operating Systems

MONOLITHIC KERNEL

The computing architecture is split into two
separated domains

User space: running application and systems
programs

Kernel space: The OS kernel including everything
below the system-call interface and above the
physical hardware

There is separation between kernel memory and
user memory

They require additional hardware support such as
MMU, MPU and CPU operating modes

Examples

Linux

SmiLies

Malfunctions in the application cannot propagate
to the kernel

Appiication

System-call interface

CPU Memory
manage” ma rager

User
address
space

Kernel
address
space

File Nevice
manager Ma. .ager

Hw-specific services

10/12/2024

Introduction to Operating Systems

MONOLITHIC KERNEL

No protection between operating systems components
Faulty drivers can crash the whole system
More than 2/3 of today OS code are drivers
Few figures
Drivers cause 85% of Windows XP crashes
Error rate in Linux drivers is 3x than in other part of the Kernel
Causes for driver bugs:
23% programming errors
38% mismatch regarding device specification

39% OS/Driver interface misconception

SmiLies

10/12/2024 Introduction to Operating Systems

MONOLITHIC KERNEL

SmiLies

User space and kernel space execution benefit from the availability of different execution modes in

the CPU
user process
user mode
user process executing —| calls system call return from system call (mode bit = 1)
\ /
z a
kernel trap return
mode bit = 0 mode bit = 1
\ kernel mode
execute system call (mode bit = 0)

[Taken from Operating Systems 10t Edition — Silbershatz, Galvin and Gagne © 2018]

10/12/2024 Introduction to Operating Systems

MONOLITHIC KERNEL EXAMPLES

smiLies
Linux Architecture (monolithic + modules)

applications
glibc standard c library
Traditional Unix Architecture ;
(the users)
el s Comande system-call interface
compilers and interpreters
system libraries
system-call interface to the kernel * *
— signals terminal file system CPU scheduling file cpPU
2) handling swapping block /O page replacement systems scheduler
2 character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory networks memory
(TCP/IP) manager
kernel interface to the hardware
eI o o o block character
erminal controllers evice controllers | memory controllers : :
terminals disks and tapes physical memory devices devices
device drivers
[Figures Taken from Operating Systems 10t Edition — Silbershatz, Galvin and Gagne © 2018]
10/12/2024

hardware

Introduction to Operating Systems

MICROKERNELS

SmiLies

Moves as much from the kernel into user space

Communication takes place between user modules using message passing

Benefits:
Easier to extend a microkernel
Easier to port the operating system to new architectures
More reliable (less code is running in kernel mode)
More secure

Detriments:

Performance overhead of user space to kernel space communication

10/12/2024 Introduction to Operating Systems

MICROKERNEL SYSTEM STRUCTURE

Malfunctions in the user space cannot corrupt the whole system

)
© . .
O — File Device Other System
£ Application a . Servi
§ Mahnager e JTTagetr ervices
D
@ message passing message passing
o
S
[
CPU Memor
GE) IPC Hw-specific services
& manager manager

10/12/2024 Introduction to Operating Systems

MICROKERNEL EXAMPLES

Darwin (Mac OSX)

applications
7 7
library interface
a® v
Mach BSD (POSIX)
traps system calls
Y m+emory
scheduling| IPC management
iokit
Mach kernel
kexts

[Figures Taken from Operating Systems 10t Edition — Silbershatz, Galvin and Gagne © 2018]

10S

applications

¥

user experience

application frameworks

core frameworks

kernel environment (Darwin)

SmiLies

10/12/2024

Introduction to Operating Systems

MONOLITHIC KERNELS VS MICROKERNELS

SmiLies

Microkernels can be better validated than monolithic kernel as much smaller

Less code to read and checks, easier to guarantee the correctness of the code

Example: i386
L4 microkernel: 15.000 lines of code

Linux: 300.000 lines of code excluding drivers

Monolithic kernels have better performance in
Executing system calls

Calls between operating system components

10/12/2024 Introduction to Operating Systems

MONOLITHIC KERNELS VS MICROKERNELS

SmiLies

System call performance Calls between operating system components
Monolithic kernel: 2 context switches Monolithic kernel: 1 function call
Microkernel: 4 context switches Microkernel: 4 context switches

Device

Networking Driver

Application
| 2

- Device .
| 4 2T 3 |

Device Device
Driver Driver Microkernel

10/12/2024 Introduction to Operating Systems

SmiLies

HYBRID SYSTEMS

Most modern operating systems are not one pure model
Hybrid combines multiple approaches to address performance, security, usability needs

Linux and Solaris kernels in kernel address space, so monolithic, plus modular for dynamic loading of
functionality

Windows mostly monolithic, plus microkernel for different subsystem personalities
Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa programming environment

Below is kernel consisting of Mach microkernel and BSD Unix parts, plus I/0O kit and dynamically loadable
modules (called kernel extensions)

10/12/2024 Introduction to Operating Systems

LET’S TRY TO WRITE ATOY FLAT OS ,!j“m"

https://baltig.polito.it/teaching-material/exercises-caos-and-os/myfirstos

10/12/2024 Introduction to Operating Systems

https://baltig.polito.it/teaching-material/exercises-caos-and-os/myfirstos

Department of Control and
Computer Engineering

SMiLIesS
re ilientco puter arch tectures QUESTIONS?

and ' f- “ciences

THANKYOU!

	Slide 1: INTRODUCTION TO OPERATING SYSTEMS
	Slide 2: OPERATING SYSTEM DEFINITION
	Slide 3: A View of Operating System Services
	Slide 4: Operating System Services
	Slide 5: Operating System Services
	Slide 6: Operating System Services
	Slide 7: SYSTEM CALLS
	Slide 8: OPERATING SYSTEMS ARCHITECURES
	Slide 9: Flat architecture
	Slide 10: FLAT ARCHITECTURE
	Slide 11: HOW AN OS RUN?
	Slide 12: HOW AN OS RUN?
	Slide 13: WHAT ABOUT APPLICATION PROGRAMS?
	Slide 14: FIXED TASKS
	Slide 15: PROGRAMMABLE TASKS
	Slide 16: Loader
	Slide 17: Linkers and Loaders
	Slide 18: Flat architecture
	Slide 19: Monolithic KERNEL
	Slide 20: monolithic kernel
	Slide 21: Monolithic KERNEL
	Slide 22: MONOLITHIC KERNEL EXAMPLES
	Slide 23: Microkernels
	Slide 24: Microkernel System Structure
	Slide 25: MICROKERNEL EXAMPLES
	Slide 26: Monolithic kernels vs Microkernels
	Slide 27: Monolithic kernels vs Microkernels
	Slide 28: Hybrid Systems
	Slide 29: LET’S TRY TO WRITE A TOY FLAT OS
	Slide 30

