
INTRODUCTION TO ARM

PROCESSOR
STEFANO DI CARLO

FLOW OF TOPICS

 ARM Architecture

 ARM programmer’s model

 ARM Development tools

 Memory Hierarchy

 ARM Assembly Language Programming

 Simple Examples

 Architectural Support for Operating systems

210/10/2024 Introduction to ARM architecture

ARM ARCHITECTURE

10/10/2024 3Introduction to ARM architecture

ARM ARCHITECTURE

 Follows RISC (Reduced Instruction Set Computer) Architecture

 Both in Von Neumann and Harvard Architecture

 Both Little endian and Big endian

 32-bit processor

 32-bit address line

 Features Used from RISC design

 A Load/Store Architecture

 Fixed length 32-bit instructions

 3 operands instruction formats

 Features rejected from RISC design

 Register windows: several set of registers used for different function calls

 Delayed branches: a technique to reduce pipeline stalls caused by branch instructions. The instruction immediately
following a branch instruction (the branch delay slot) is always executed, regardless of whether the branch is taken or not.

 Single cycle execution of all instructions

410/10/2024 Introduction to ARM architecture

Programming Model

510/10/2024 Introduction to ARM architecture

PROGRAMMING MODEL

 ARM’s Register

 CPSR Register

 Memory System

 Load Store Architecture

 ARM Instruction Set

 I/O system

 ARM exceptions

610/10/2024 Introduction to ARM architecture

ARM REGISTERS (USER MODE)

 General purpose registers (r0 to r12): 32bit general
purpose registers.

 SP - Stack Pointer (r13): typically used as the stack
pointer, pointing to the top of the current stack in
memory.

 LR - Link Register (r14): holding the return address for
function calls. When a function is called, the address of
the instruction following the call is stored in R14, so the
program can return to that point after the function
execution completes.

 PC - Program Counter (r15): holds the address of the
next instruction to be executed. It automatically
increments with each instruction fetch and can also be
manipulated for branching and jumping operations.

 Status register (CPSR)

710/10/2024 Introduction to ARM architecture

CURRENT PROGRAM STATUS REGISTERS

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Mode bits

 Specify the processor mode

 Interrupt Disable bits.

 I = 1: Disables the Interrupt ReQuest (IRQ).

 F = 1: Disables the Fast Interrupt request (FIQ).

 T Bit

 Architecture xT only

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

810/10/2024 Introduction to ARM architecture

CURRENT PROGRAM STATUS REGISTERS

9

 User mode(usr) — normal program execution mode

 Fast Interrupt mode (fiq) — supports a high-speed data
transfer or channel process.

 Interrupt mode (irq) — psed for general-purpose
interrupt handling.

 Supervisor mode (svc) — protected mode for the
operating system.

 Abort mode (abt) — implements virtual memory
and/or memory protection

 System mode (sys) — A privileged user mode for the
operating system. (runs OS tasks)

 Undefined mode (und) — supports a software
emulation of hardware coprocessors

Except user mode, all are known as privileged mode.

10/10/2024 Introduction to ARM architecture

SUPERVISOR MODE

 A protection mechanism ensures that user code
cannot gain supervisor privileges without
appropriate checks.

 System-level functions can only be accessed
through specified supervisor calls.

 These functions generally include any accesses to
hardware peripheral registers, and to widely used
operations, i.e., character input and output.

 The svc mode can be entered when an SVC
instruction is executed.

1010/10/2024 Introduction to ARM architecture

REGISTER ORGANIZATION SUMMARY

11

User
mode
r0-r7,
r15,
and
cpsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User

r13 (sp)

r14 (lr)

spsr

IRQ

User
mode
r0-r12,

r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Undef

User
mode
r0-r12,

r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User
mode
r0-r12,

r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User
mode
r0-r12,

r15,
and
cpsr

Thumb state
Low registers

Thumb state
High registers

Note: System mode uses the User mode register set

10/10/2024 Introduction to ARM architecture

MEMORY SYSTEM

 In addition to the processor register, ARM system
has memory state

 Memory may be viewed as a linear array of bytes
numbered form 0 up to 232 – 1

 Data items may be 8-bit bytes, 16-bit half words or
32-bit words

 Words are always aligned on 4-byte boundaries

 Half words are aligned on even byte boundaries

 Byte may occupy any of these locations

1210/10/2024 Introduction to ARM architecture

LOAD STORE ARCHITECTURE

 ARM does not support 'memory-to-memory' operations.

 All ARM instructions fall into one of the following three categories:

 Data processing instructions — use and change only register values. For example, an instruction can add
two registers and place the result in a register.

 Data transfer instructions — copy memory values into registers (load instructions) or copy register values
into memory (store instructions).

 Control flow instructions —cause execution to switch to a different address, either permanently (branch
instructions) or saving a return address to resume the original sequence (branch and link instructions) or
trapping into system code (supervisor calls).

1310/10/2024 Introduction to ARM architecture

I/O SYSTEM

 The ARM handles I/O (input/output) peripherals
(such as disk controllers, network interfaces, and so
on) as memory-mapped devices with interrupt
support.

 The internal registers in these devices appear as
addressable locations within the ARM's memory
map and may be read and written using the same
(load-store) instructions as any other memory
locations.

14

TM4C123GH6PM ARM Cortex M4 microcontroller

Taken form https://stackoverflow.com/questions/74227194/how-does-memory-mapped-i-o-mmio-work-on-arm-
architectures

10/10/2024 Introduction to ARM architecture

ARM EXCEPTIONS

 The ARM architecture supports a range of interrupts, traps and
supervisor calls, all grouped under the general heading of
exceptions.

 Step 1: The processor saves the current execution context
(registers, program counter, and processor status) onto the stack.
The stack pointer is set to point to the current stack, which is
typically the main stack pointer (MSP) or process stack pointer
(PSP), depending on the configuration.

 Step 2: Set the return code in the Link Registrer

 Step 3: Change the execution mode (if needed) and set a new
stack (if needed)

 Step 4: The processor uses the vector table to identify the
corresponding exception handler address for the triggered
exception. The vector table is typically located at a fixed memory
address.

 Once the exception is handled, the processor executes the BX LR
instruction (or BX with the link register) to return to the main
program. Before returning, the processor restores the saved
context from the stack.

1510/10/2024 Introduction to ARM architecture

ARM INSTRUCTION SET

 The most notable features of the ARM instruction set are:

 32 bits wide

 Load-store architecture

 3-address data processing instructions

 conditional execution of every instruction

 The inclusion of very powerful load and store multiple register instructions

 The ability to perform a general shift operations and a general ALU operation in a single instruction that
executes in a single clock cycle

 Open instruction set extensions through the coprocessor instruction set, including adding new registers and
data types to the programmer's model

 A very dense 16-bit compressed representation of the instruction set in the Thumb architecture

1610/10/2024 Introduction to ARM architecture

ARM ASSEMBLY LANGUAGE PROGRAMMING

 Data processing Instructions

 Data Transfer Instructions

 Control flow Instruction

 [https://iitd-plos.github.io/col718/ref/arm-instructionset.pdf]

1710/10/2024 Introduction to ARM architecture

DATA PROCESSING INSTRUCTIONS

 Simple register operands

 Register movement operations

 Comparison operations

 Immediate Operands

 Shifted register operands

 Multiplies

1810/10/2024 Introduction to ARM architecture

SIMPLE REGISTER OPERANDS

; Simple math operations

ADD r0, r1, r2 ; r0 := r1 + r2

ADC r0, r1, r2 ; r0:= r1 + r2 + C

SUB r0, r1, r2 ; r0 := r1 - r2

SBC r0, r1, r2 ; r0 := r1 - r2 + C -1

RSB r0, r1, r2 ; r0 := r2 – r1

RSC r0, r1, r2 ; r0 := r2 – r1 + C - 1

; Simple logical operations

AND r0, r1, r2 ; r0 := r1 and r2

ORR r0, r1, r2 ; r0 := r1 or r2

EOR r0, r1, r2 ; r0 := r1 xor r2

BIC r0, r1, r2 ; r0 := r1 and nor r2 (Bit Clear)

1910/10/2024 Introduction to ARM architecture

REGISTER MOVEMENT OPERATIONS

MOV r0, r2 ; r0 := r2

MVN r0, r2 ; r0 := not r2

2010/10/2024 Introduction to ARM architecture

COMPARISON OPERATIONS

CMP r1, r2 ; Compare and set flags

TST r1, r2 ; As AND but result is not written

CMN r1, r2 ; As ADD, but result is not written

TEQ r1, r2 ; As EOR, but result is not written

2110/10/2024 Introduction to ARM architecture

IMMEDIATE OPERANDS

ADD r3, r3, #1 ; r3 = r2 + #1

AND r8, r7, #FF ; r8 = r7 + #FF

2210/10/2024 Introduction to ARM architecture

SHIFTED REGISTER OPERANDS

 Logical Shift Left (LSL) — Shifts bits to the left and fills the
vacated bits with zeros

 Logical Shift Right (LSR) — Shifts bits to the right and fills the
vacated bits with zeros

 Arithmetic Shift Right (ASR) — Shifts bits to the right and fills
the vacated bits with the sign bit (most significant bit).

 Rotate Right (ROR) — Rotates bits to the right. The bits shifted
out from the right end are wrapped around to the left end.

 Rotate Right with Extend (RRX) — Performs a right rotation
with the least significant bit (LSB) being loaded into the carry
flag. The most significant bit (MSB) is filled with the carry.

 ARM Instructions ARM instructions can utilize these shift
operations directly in their operands.

23

<OPERATION> r3, r3, #amount

ADD R0, R1, R2, LSL #2 ; R2 is shifted left by 2 before being added to R1

SUB R3, R4, R5, LSR #1 ; R5 is shifted right by 1 before being subtracted from R4

MOV R6, R7, ASR #3 ; R7 is arithmetically shifted right by 3 and moved to R6

10/10/2024 Introduction to ARM architecture

MULTIPLICATIONS

MUL r4, r3, r2 ; r4 := r3 * r2

MLA r4, r3, r2, r1 ; r4 := r3 * r2 + r1

;Immediate second operands are not supported.

;The result register must not be the same as the first source

register.

2410/10/2024 Introduction to ARM architecture

DATA TRANSFER INSTRUCTIONS

 Basic addressing

 Multiple register data transfer

 Swap

2510/10/2024 Introduction to ARM architecture

DATA TRANSFER INSTRUCTIONS

2610/10/2024 Introduction to ARM architecture

BASIC ADDRESSING

; Register Indirect Addressing Mode

LDR r0, [r1] ; r0 := mem32[r1]

STR r0, [r1] ; mem32[r1] = r0

; Initializing an address pointer

ADR r1, TABLE ; r1 stores the Address of TABLE

; Base Plus Offset

LDR r0, [r1,#4] ; r0= mem32[r1+4]

2710/10/2024 Introduction to ARM architecture

MULTIPLE REGISTER DATA TRANSFER

STMIA r0!, {r1,r2} ; mem32[r0] := r1

 ; mem32[r0+4] := r2

 ; r0 := r0 + 8

STMIA r0, {r1-r3} ; mem32[r0] := r1

 ; mem32[r0+4] := r2

 ; mem32[r0+8] := r3

LDMIA r0!, {r1,r2} ; r1 := mem32[r0]

 ; r2 := mem32[r0+4]

 ; r0 := r0 + 8

LDMIA r0, {r1-r3} ; r1 := mem32[r0]

 ; r2 := mem32[r0+4]

 ; r2 := mem32[r0+8]

2810/10/2024 Introduction to ARM architecture

SWAP

SWP r0, r1, [r2] ;Load R0 with the word addressed by R1 and store

 r1 at r2

SWPB r2, r3, [r4] ;Load R2 with the byte addresse by r4 and store

 bits 0 to 7 of R3 at R4

SWPEQ r0, r0, [r1] ;Conditionally swap (if Z flag is set) the

 contents of the word addressed by R1 with r0

2910/10/2024 Introduction to ARM architecture

CONDITIONAL BRANCHES

30

Z=1

C=1

C=0

N=1

N=0

V=1

V=0

C=1 & Z=0

C=0 & Z=1

N=V

N!=V

Z=0 & N=V

Z=1 & N!=V

Z=0

10/10/2024 Introduction to ARM architecture

THANK YOU!

QUESTIONS?

	Slide 1: Introduction to ARM processor
	Slide 2: Flow of Topics
	Slide 3: ARM ARCHITECTURE
	Slide 4: ARM Architecture
	Slide 5: Programming Model
	Slide 6: Programming Model
	Slide 7: ARM Registers (USER MODE)
	Slide 8: Current Program Status Registers
	Slide 9: Current Program Status Registers
	Slide 10: Supervisor Mode
	Slide 11: Register Organization Summary
	Slide 12: Memory System
	Slide 13: Load Store Architecture
	Slide 14: I/O System
	Slide 15: ARM Exceptions
	Slide 16: Arm Instruction Set
	Slide 17: ARM Assembly Language Programming
	Slide 18: Data Processing Instructions
	Slide 19: Simple Register Operands
	Slide 20: Register movement operations
	Slide 21: Comparison operations
	Slide 22: Immediate operands
	Slide 23: Shifted Register Operands
	Slide 24: MULTIPLICATIONS
	Slide 25: Data Transfer Instructions
	Slide 26: Data Transfer Instructions
	Slide 27: BASIC ADDRESSING
	Slide 28: Multiple register data transfer
	Slide 29: SWAP
	Slide 30: Conditional Branches
	Slide 31

