
1TMT H E A R C H I T E C T U R E F O R T H E D I G I T A L W O R L D

The ARM Architecture

2TM 239v10 The ARM Architecture

Agenda

◼ Introduction to ARM Ltd

Programmers Model

Instruction Set

System Design

Development Tools

3TM 339v10 The ARM Architecture

ARM Ltd

◼ Founded in November 1990

◼ Spun out of Acorn Computers

◼ Designs the ARM range of RISC processor
cores

◼ Licenses ARM core designs to semiconductor
partners who fabricate and sell to their

customers.

◼ ARM does not fabricate silicon itself

◼ Also develop technologies to assist with the
design-in of the ARM architecture

◼ Software tools, boards, debug hardware,

application software, bus architectures,

peripherals etc

4TM 439v10 The ARM Architecture

ARM Partnership Model

5TM 539v10 The ARM Architecture

ARM Powered Products

6TM 639v10 The ARM Architecture

◼ ARM provides hard and soft views to licencees

◼ RTL and synthesis flows

◼ GDSII layout

◼ Licencees have the right to use hard or soft views of the IP

◼ soft views include gate level netlists

◼ hard views are DSMs

◼ OEMs must use hard views

◼ to protect ARM IP

Intellectual Property

7TM 739v10 The ARM Architecture

Agenda

Introduction to ARM Ltd

◼ Programmers Model

 Instruction Sets

 System Design

 Development Tools

8TM 839v10 The ARM Architecture

Data Sizes and Instruction Sets

◼ The ARM is a 32-bit architecture.

◼ When used in relation to the ARM:

◼ Byte means 8 bits

◼ Halfword means 16 bits (two bytes)

◼ Word means 32 bits (four bytes)

◼ Most ARM’s implement two instruction sets

◼ 32-bit ARM Instruction Set

◼ 16-bit Thumb Instruction Set

◼ Jazelle cores can also execute Java bytecode

9TM 939v10 The ARM Architecture

Processor Modes

◼ The ARM has seven basic operating modes:

◼ User : unprivileged mode under which most tasks run

◼ FIQ : entered when a high priority (fast) interrupt is raised

◼ IRQ : entered when a low priority (normal) interrupt is raised

◼ Supervisor : entered on reset and when a Software Interrupt

 instruction is executed

◼ Abort : used to handle memory access violations

◼ Undef : used to handle undefined instructions

◼ System : privileged mode using the same registers as user mode

10TM 1039v10 The ARM Architecture

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ ModeIRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set

11TM 1139v10 The ARM Architecture

Register Organization Summary

User

mode

r0-r7,

r15,

and

cpsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User

r13 (sp)

r14 (lr)

spsr

IRQ

User

mode

r0-r12,

r15,

and

cpsr

r13 (sp)

r14 (lr)

spsr

Undef

User

mode

r0-r12,

r15,

and

cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User

mode

r0-r12,

r15,

and

cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User

mode

r0-r12,

r15,

and

cpsr

Thumb state

Low registers

Thumb state

High registers

Note: System mode uses the User mode register set

12TM 1239v10 The ARM Architecture

The Registers

◼ ARM has 37 registers all of which are 32-bits long.

◼ 1 dedicated program counter

◼ 1 dedicated current program status register

◼ 5 dedicated saved program status registers

◼ 30 general purpose registers

◼ The current processor mode governs which of several banks is

accessible. Each mode can access

◼ a particular set of r0-r12 registers

◼ a particular r13 (the stack pointer, sp) and r14 (the link register, lr)

◼ the program counter, r15 (pc)

◼ the current program status register, cpsr

 Privileged modes (except System) can also access

◼ a particular spsr (saved program status register)

13TM 1339v10 The ARM Architecture

Program Status Registers

◼ Condition code flags

◼ N = Negative result from ALU

◼ Z = Zero result from ALU

◼ C = ALU operation Carried out

◼ V = ALU operation oVerflowed

◼ Sticky Overflow flag - Q flag

◼ Architecture 5TE/J only

◼ Indicates if saturation has occurred

◼ J bit

◼ Architecture 5TEJ only

◼ J = 1: Processor in Jazelle state

◼ Interrupt Disable bits.

◼ I = 1: Disables the IRQ.

◼ F = 1: Disables the FIQ.

◼ T Bit

◼ Architecture xT only

◼ T = 0: Processor in ARM state

◼ T = 1: Processor in Thumb state

◼ Mode bits

◼ Specify the processor mode

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

14TM 1439v10 The ARM Architecture

◼ When the processor is executing in ARM state:

◼ All instructions are 32 bits wide

◼ All instructions must be word aligned

◼ Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as

instruction cannot be halfword or byte aligned).

◼ When the processor is executing in Thumb state:

◼ All instructions are 16 bits wide

◼ All instructions must be halfword aligned

◼ Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as
instruction cannot be byte aligned).

◼ When the processor is executing in Jazelle state:

◼ All instructions are 8 bits wide

◼ Processor performs a word access to read 4 instructions at once

Program Counter (r15)

15TM 1539v10 The ARM Architecture

Vector Table

Exception Handling

◼ When an exception occurs, the ARM:

◼ Copies CPSR into SPSR_<mode>

◼ Sets appropriate CPSR bits

◼ Change to ARM state

◼ Change to exception mode

◼ Disable interrupts (if appropriate)

◼ Stores the return address in LR_<mode>

◼ Sets PC to vector address

◼ To return, exception handler needs to:

◼ Restore CPSR from SPSR_<mode>

◼ Restore PC from LR_<mode>

 This can only be done in ARM state.

Vector table can be at

0xFFFF0000 on ARM720T

 and on ARM9/10 family devices

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

16TM 1639v10 The ARM Architecture

Development of the

ARM Architecture

SA-110

ARM7TDMI

4T

1

Halfword

and signed
halfword /
byte support

System
mode

Thumb

instruction
set

2

4

ARM9TDMI

SA-1110

ARM720T ARM940T

Improved

ARM/Thumb
Interworking

CLZ

5TE

Saturated maths

DSP multiply-
accumulate

instructions

XScale

ARM1020E

ARM9E-S

ARM966E-S

3

Early ARM

architectures

ARM9EJ-S

5TEJ

ARM7EJ-S

ARM926EJ-S

Jazelle

Java bytecode
execution

6

ARM1136EJ-S

ARM1026EJ-S

SIMD Instructions

Multi-processing

V6 Memory

architecture (VMSA)

Unaligned data

support

17TM 1739v10 The ARM Architecture

Agenda

Introduction to ARM Ltd

 Programmers Model

◼ Instruction Sets

 System Design

 Development Tools

18TM 1839v10 The ARM Architecture

◼ ARM instructions can be made to execute conditionally by postfixing

them with the appropriate condition code field.

◼ This improves code density and performance by reducing the number of

forward branch instructions.
 CMP r3,#0 CMP r3,#0

 BEQ skip ADDNE r0,r1,r2

 ADD r0,r1,r2

skip

◼ By default, data processing instructions do not affect the condition code

flags but the flags can be optionally set by using “S”. CMP does not
need “S”.
 loop

 …

 SUBS r1,r1,#1

 BNE loop
if Z flag clear then branch

decrement r1 and set flags

Conditional Execution and Flags

19TM 1939v10 The ARM Architecture

Condition Codes

Not equal

Unsigned higher or same

Unsigned lower

Minus

Equal

Overflow

No overflow

Unsigned higher

Unsigned lower or same

Positive or Zero

Less than

Greater than

Less than or equal

Always

Greater or equal

EQ

NE

CS/HS

CC/LO

PL

VS

HI

LS

GE

LT

GT

LE

AL

MI

VC

Suffix Description

Z=0

C=1

C=0

Z=1

Flags tested

N=1

N=0

V=1

V=0

C=1 & Z=0

C=0 or Z=1

N=V

N!=V

Z=0 & N=V

Z=1 or N=!V

◼ The possible condition codes are listed below:
◼ Note AL is the default and does not need to be specified

20TM 2039v10 The ARM Architecture

Examples of conditional

execution

◼ Use a sequence of several conditional instructions
 if (a==0) func(1);

 CMP r0,#0

MOVEQ r0,#1

BLEQ func

◼ Set the flags, then use various condition codes
 if (a==0) x=0;

if (a>0) x=1;

 CMP r0,#0

MOVEQ r1,#0

MOVGT r1,#1

◼ Use conditional compare instructions
 if (a==4 || a==10) x=0;

 CMP r0,#4

CMPNE r0,#10

MOVEQ r1,#0

21TM 2139v10 The ARM Architecture

◼ Branch : B{<cond>} label

◼ Branch with Link : BL{<cond>} subroutine_label

◼ The processor core shifts the offset field left by 2 positions, sign-extends

it and adds it to the PC

◼ ± 32 Mbyte range

◼ How to perform longer branches?

2831 24 0

Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

232527

Branch instructions

22TM 2239v10 The ARM Architecture

Data processing Instructions

◼ Consist of :
◼ Arithmetic: ADD ADC SUB SBC RSB RSC

◼ Logical: AND ORR EOR BIC

◼ Comparisons: CMP CMN TST TEQ

◼ Data movement: MOV MVN

◼ These instructions only work on registers, NOT memory.

◼ Syntax:

 <Operation>{<cond>}{S} Rd, Rn, Operand2

◼ Comparisons set flags only - they do not specify Rd

◼ Data movement does not specify Rn

◼ Second operand is sent to the ALU via barrel shifter.

23TM 2339v10 The ARM Architecture

The Barrel Shifter

DestinationCF 0 Destination CF

LSL : Logical Left Shift ASR: Arithmetic Right Shift

Multiplication by a power of 2 Division by a power of 2,
preserving the sign bit

Destination CF...0 Destination CF

LSR : Logical Shift Right ROR: Rotate Right

Division by a power of 2 Bit rotate with wrap around
from LSB to MSB

Destination

RRX: Rotate Right Extended

Single bit rotate with wrap around
from CF to MSB

CF

24TM 2439v10 The ARM Architecture

Register, optionally with shift operation

◼ Shift value can be either be:

◼ 5 bit unsigned integer

◼ Specified in bottom byte of another

register.

◼ Used for multiplication by constant

Immediate value

◼ 8 bit number, with a range of 0-255.

◼ Rotated right through even number of

positions

◼ Allows increased range of 32-bit

constants to be loaded directly into

registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Using the Barrel Shifter:

The Second Operand

25TM 2539v10 The ARM Architecture

◼ No ARM instruction can contain a 32 bit immediate constant

◼ All ARM instructions are fixed as 32 bits long

◼ The data processing instruction format has 12 bits available for operand2

◼ 4 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

◼ Rule to remember is “8-bits shifted by an even number of bit positions”.

0711 8

immed_8

Shifter

ROR

rot

x2

Quick Quiz:

0xe3a004ff

MOV r0, #???

Immediate constants (1)

26TM 2639v10 The ARM Architecture

◼ Examples:

◼ The assembler converts immediate values to the rotate form:
◼ MOV r0,#4096 ; uses 0x40 ror 26

◼ ADD r1,r2,#0xFF0000 ; uses 0xFF ror 16

◼ The bitwise complements can also be formed using MVN:
◼ MOV r0, #0xFFFFFFFF ; assembles to MVN r0,#0

◼ Values that cannot be generated in this way will cause an error.

031

ror #0

range 0-0xff000000 step 0x01000000 ror #8

range 0-0x000000ff step 0x00000001

range 0-0x000003fc step 0x00000004 ror #30

0 0

0 0

0 0

Immediate constants (2)

27TM 2739v10 The ARM Architecture

◼ To allow larger constants to be loaded, the assembler offers a pseudo-
instruction:
◼ LDR rd, =const

◼ This will either:
◼ Produce a MOV or MVN instruction to generate the value (if possible).

 or
◼ Generate a LDR instruction with a PC-relative address to read the constant

from a literal pool (Constant data area embedded in the code).

◼ For example
◼ LDR r0,=0xFF => MOV r0,#0xFF

◼ LDR r0,=0x55555555 => LDR r0,[PC,#Imm12]

 …
 …
 DCD 0x55555555

◼ This is the recommended way of loading constants into a register

Loading 32 bit constants

28TM 2839v10 The ARM Architecture

Multiply

◼ Syntax:
◼ MUL{<cond>}{S} Rd, Rm, Rs Rd = Rm * Rs

◼ MLA{<cond>}{S} Rd,Rm,Rs,Rn Rd = (Rm * Rs) + Rn

◼ [U|S]MULL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs

◼ [U|S]MLAL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := (Rm*Rs)+RdHi,RdLo

◼ Cycle time

◼ Basic MUL instruction

◼ 2-5 cycles on ARM7TDMI

◼ 1-3 cycles on StrongARM/XScale

◼ 2 cycles on ARM9E/ARM102xE

◼ +1 cycle for ARM9TDMI (over ARM7TDMI)

◼ +1 cycle for accumulate (not on 9E though result delay is one cycle longer)

◼ +1 cycle for “long”

◼ Above are “general rules” - refer to the TRM for the core you are using

for the exact details

29TM 2939v10 The ARM Architecture

Single register data transfer

LDR STR Word

 LDRB STRB Byte

 LDRH STRH Halfword

 LDRSB Signed byte load

 LDRSH Signed halfword load

◼ Memory system must support all access sizes

◼ Syntax:
◼ LDR{<cond>}{<size>} Rd, <address>

◼ STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

30TM 3039v10 The ARM Architecture

Address accessed

◼ Address accessed by LDR/STR is specified by a base register plus an
offset

◼ For word and unsigned byte accesses, offset can be
◼ An unsigned 12-bit immediate value (ie 0 - 4095 bytes).
 LDR r0,[r1,#8]

◼ A register, optionally shifted by an immediate value
 LDR r0,[r1,r2]

 LDR r0,[r1,r2,LSL#2]

◼ This can be either added or subtracted from the base register:
 LDR r0,[r1,#-8]

 LDR r0,[r1,-r2]
 LDR r0,[r1,-r2,LSL#2]

◼ For halfword and signed halfword / byte, offset can be:
◼ An unsigned 8 bit immediate value (ie 0-255 bytes).

◼ A register (unshifted).

◼ Choice of pre-indexed or post-indexed addressing

31TM 3139v10 The ARM Architecture

0x5

0x5

r1

0x200
Base

Register 0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x200

Original
Base

Register
0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x20c

Updated
Base

Register

Auto-update form: STR r0,[r1,#12]!

Pre or Post Indexed Addressing?

◼ Pre-indexed: STR r0,[r1,#12]

◼ Post-indexed: STR r0,[r1],#12

32TM 3239v10 The ARM Architecture

LDM / STM operation

◼ Syntax:

<LDM|STM>{<cond>}<addressing_mode> Rb{!}, <register list>

◼ 4 addressing modes:

 LDMIA / STMIA increment after

 LDMIB / STMIB increment before

 LDMDA / STMDA decrement after

 LDMDB / STMDB decrement before

IA

r1 Increasing

Address

r4

r0

r1

r4

r0

r1

r4

r0 r1

r4

r0

r10

IB DA DB

LDMxx r10, {r0,r1,r4}

STMxx r10, {r0,r1,r4}

Base Register (Rb)

33TM 3339v10 The ARM Architecture

Software Interrupt (SWI)

◼ Causes an exception trap to the SWI hardware vector

◼ The SWI handler can examine the SWI number to decide what operation
has been requested.

◼ By using the SWI mechanism, an operating system can implement a set
of privileged operations which applications running in user mode can

request.

◼ Syntax:

◼ SWI{<cond>} <SWI number>

2831 2427 0

Cond 1 1 1 1 SWI number (ignored by processor)

23

Condition Field

34TM 3439v10 The ARM Architecture

PSR Transfer Instructions

◼ MRS and MSR allow contents of CPSR / SPSR to be transferred to / from

a general purpose register.

◼ Syntax:

◼ MRS{<cond>} Rd,<psr> ; Rd = <psr>

◼ MSR{<cond>} <psr[_fields]>,Rm ; <psr[_fields]> = Rm

 where
◼ <psr> = CPSR or SPSR

◼ [_fields] = any combination of ‘fsxc’

◼ Also an immediate form

◼ MSR{<cond>} <psr_fields>,#Immediate

◼ In User Mode, all bits can be read but only the condition flags (_f) can be

written.

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

35TM 3539v10 The ARM Architecture

ARM Branches and Subroutines

◼ B <label>

◼ PC relative. ±32 Mbyte range.

◼ BL <subroutine>

◼ Stores return address in LR

◼ Returning implemented by restoring the PC from LR

◼ For non-leaf functions, LR will have to be stacked

STMFD

sp!,{regs,lr}

:

BL func2

:

LDMFD

sp!,{regs,pc}

func1 func2

:

:

BL func1

:

:

:

:

:

:

:

MOV pc, lr

36TM 3639v10 The ARM Architecture

Thumb

◼ Thumb is a 16-bit instruction set

◼ Optimised for code density from C code (~65% of ARM code size)

◼ Improved performance from narrow memory

◼ Subset of the functionality of the ARM instruction set

◼ Core has additional execution state - Thumb

◼ Switch between ARM and Thumb using BX instruction

015

31 0
ADDS r2,r2,#1

ADD r2,#1

32-bit ARM Instruction

16-bit Thumb Instruction

For most instructions generated by compiler:

◼ Conditional execution is not used

◼ Source and destination registers identical

◼ Only Low registers used

◼ Constants are of limited size

◼ Inline barrel shifter not used

37TM 3739v10 The ARM Architecture

Agenda

Introduction

 Programmers Model

 Instruction Sets

◼ System Design

 Development Tools

38TM 3839v10 The ARM Architecture

Example ARM-based System

16 bit RAM

8 bit ROM

32 bit RAM

ARM
Core

I/OPeripherals

Interrupt

Controller

nFIQnIRQ

39TM 3939v10 The ARM Architecture

AMBA

B
ri

d
g

e

Timer

On-chip

RAM

ARM

Interrupt

Controller

Remap/

Pause

TIC

Arbiter

Bus InterfaceExternal

ROM

External

RAM

Reset

System Bus Peripheral Bus

◼ AMBA

◼ Advanced Microcontroller Bus

Architecture

◼ ADK

◼ Complete AMBA Design Kit

◼ ACT

◼ AMBA Compliance Testbench

◼ PrimeCell

◼ ARM’s AMBA compliant peripherals

AHB or ASB APB

External

Bus

Interface

Decoder

40TM 4039v10 The ARM Architecture

Agenda

Introduction

 Programmers Model

 Instruction Sets

 System Design

◼ Development Tools

41TM 4139v10 The ARM Architecture

The RealView Product Families

Debug Tools

AXD (part of ADS)

Trace Debug Tools

Multi-ICE

Multi-Trace

Platforms

ARMulator (part of ADS)

Integrator Family

Compilation Tools

ARM Developer Suite (ADS) –

Compilers (C/C++ ARM & Thumb),
Linker & Utilities

RealView Compilation Tools (RVCT) RealView Debugger (RVD)

RealView ICE (RVI)

RealView Trace (RVT)

RealView ARMulator ISS (RVISS)

42TM 4239v10 The ARM Architecture

ARM Debug Architecture

ARM

core

ETM

TAP

controller

Trace PortJTAG port

Ethernet

Debugger (+ optional

trace tools)

◼ EmbeddedICE Logic

◼ Provides breakpoints and processor/system

access

◼ JTAG interface (ICE)

◼ Converts debugger commands to JTAG

signals

◼ Embedded trace Macrocell (ETM)

◼ Compresses real-time instruction and data

access trace

◼ Contains ICE features (trigger & filter logic)

◼ Trace port analyzer (TPA)

◼ Captures trace in a deep buffer

EmbeddedICE

Logic

	Slide 1: The ARM Architecture
	Slide 2: Agenda
	Slide 3: ARM Ltd
	Slide 4: ARM Partnership Model
	Slide 5: ARM Powered Products
	Slide 6
	Slide 7: Agenda
	Slide 8: Data Sizes and Instruction Sets
	Slide 9: Processor Modes
	Slide 10: The ARM Register Set
	Slide 11: Register Organization Summary
	Slide 12: The Registers
	Slide 13: Program Status Registers
	Slide 14: Program Counter (r15)
	Slide 15: Exception Handling
	Slide 16: Development of the ARM Architecture
	Slide 17: Agenda
	Slide 18: Conditional Execution and Flags
	Slide 19: Condition Codes
	Slide 20: Examples of conditional execution
	Slide 21: Branch instructions
	Slide 22: Data processing Instructions
	Slide 23: The Barrel Shifter
	Slide 24: Using the Barrel Shifter: The Second Operand
	Slide 25: Immediate constants (1)
	Slide 26: Immediate constants (2)
	Slide 27: Loading 32 bit constants
	Slide 28: Multiply
	Slide 29: Single register data transfer
	Slide 30: Address accessed
	Slide 31: Pre or Post Indexed Addressing?
	Slide 32: LDM / STM operation
	Slide 33: Software Interrupt (SWI)
	Slide 34: PSR Transfer Instructions
	Slide 35: ARM Branches and Subroutines
	Slide 36: Thumb
	Slide 37: Agenda
	Slide 38: Example ARM-based System
	Slide 39: AMBA
	Slide 40: Agenda
	Slide 41: The RealView Product Families
	Slide 42: ARM Debug Architecture
	Slide 43

